
A Framework for a Comprehensive Evaluation of
Ant-Inspired Peer-to-Peer Protocols

Amos Brocco and Ingmar Baumgart
Institute of Telematics,

Karlsruhe Institute of Technology, Germany
Email: amos.brocco@gmail.com, baumgart@kit.edu

Abstract—Following a constant rise in the complexity and scale
of peer-to-peer networks, researchers have looked at biological
phenomena in order to develop self-organized, adaptive, and
robust management systems. Our focus is on distributed swarm
intelligence mechanisms that mimic the behavior of social insects
to solve problems such as overlay management, routing, task
allocation, and resource discovery. A central problem in the vali-
dation of novel networking solutions is their empirical evaluation
under different conditions. Whereas existing network simulation
platforms lack specific support for ant-inspired protocols (like
transparent agent migration), dedicated frameworks for bio-
inspired systems fail to implement accurate network models. To
bridge this gap, we introduce a framework with support for bio-
inspired techniques and realistic network underlay simulation
based on OverSim. To validate our work, we describe the
implementation of several swarm-based protocols and we provide
some measurements of the simulation performance.

I. I NTRODUCTION

Nowadays distributed systems are characterized by their
large scale, complexity, heterogeneity, and dynamic nature.
In this context, conventional paradigms yield several issues
for efficient deployment and management, and self-organized
solutions have been investigated. Among these approaches,
bio-inspired ones have found their way in an growing set of
network related problems [?]. For example, the observation
of the collective behaviors of insect colonies has led to the
development of fully distributed solutions that rely on interac-
tions between simple individual agents to achieve routing or
resource discovery in large scale networks. Biological systems
are typically promoted as simple, intrinsically robust, resilient,
adaptive, and self-organized. Although these claims mightbe
valid for real biological systems and processes, coming up
with valid bio-inspired networking solutions is not an easy
task, as the latter operate in different conditions and are subject
to different constraints (such as communication efficiencyor
computational complexity) than the former. Accordingly, in
this paper we focus on the problem of validating peer-to-peer
protocols based on the bio-inspired paradigm of social insects,
namely ant colonies.

Among the existing swarm protocols, notable examples are:
AntNet [?], which solves the routing problem by replicating
the ant foraging process, Self-Chord [?] and Self-CAN [?]
which reorganize resources to improve existing structured
overlays, Messor [?], which implements a fully distributed
load-balancing mechanism, SemAnt [?], a resource discovery
protocols based on pheromone trails, and BlåtAnt [?], a

self-structured overlay maintained through the collaborative
behavior of ant-like mobile agents. When some new network
protocol is proposed, researchers are expected to come up with
experimental results that confirm their findings and show how
these new methodologies hold up against existing approaches.
In this regard, protocol analysis is of paramount importance to
ensure a quick and efficient deployment of novel paradigms.
Whereas for simple algorithms an analytical proof might
be enough for demonstrating their qualities, for large and
complex systems like peer-to-peer overlays, only real-world
setups provide a comprehensive evaluation testbed. However,
performing real experiments with large-scale networks is often
impractical (at least at the early stage of development) dueto
time constraints or excessive deployment costs, and cannot
ensure reproducible results [?].

To overcome these issues, simulators are employed to
perform tests in a variety of scenarios that replicate typi-
cal network conditions. Concerningtraditional peer-to-peer
protocols, several simulators are available [?]. Most of these
tools already implement a number of existing protocols and
provide a clean API that eases protocol development and
understanding. To assess the situation concerning the simu-
lation of bio-inspired protocols, we reviewed several scientific
papers proposing distributed swarm-intelligence algorithms.
Out of the 36 considered publications, the majority (19)
presents results obtained by means either unspecified or
custom simulators. Several approaches to routing in ad-hoc
networks (5) employ the QualNet [?] simulator. The ns-2 [?]
simulator is also employed in 4 of the considered projects,
whereas AntHill [?] and PeerSim [?] account for 3 and 2
projects respectively. Finally OMNET++ [?], GloMoSim [?],
and Overlay Weaver [?] appear to have been employed in only
one of the considered projects each. A common issue found
in custom simulators used to evaluate bio-inspired protocols
is the lack of accurate network simulation; moreover, several
research projects fail to provide details about the estimated
network overhead of the proposed solution. We argue that this
heterogeneity prevents consistent validation and replication of
published results, and the lack of a comprehensive support for
bio-inspired features in existing simulation platforms hinders
the convergence toward a common solution.

In this respect, this paper presents a novel simulation
framework based on OverSim [?] which aims at supporting
the implementation of bio-inspired protocols based on the



ant colony paradigm, and enables consistent evaluation and
comparison. The remaining of this paper is organized as
follows: Section II discusses related work concerning simula-
tion platforms for bio-inspired networking protocols. Section
III introduces our framework, while Section IV discusses
some examples of implemented protocols. Finally, Section V
reports the results of a performance evaluation, Section VI
summarizes our conclusions on this work and provides some
insights on future work.

II. RELATED WORK

As highlighted by our brief survey presented in Section I,
there exist several platforms for the simulation of peer-to-
peer protocols. As a complete review of all existing tools
is out of the scope of this paper, in this section we focus
on simulation platforms that specifically address multi-agent
and biologically inspired systems. For a detailed survey of
traditional simulation frameworks, the interested readercan
refer to [?], [?] or [?].

A first example, named AntHill [?], has been developed in
the framework of the Bison project to support the develop-
ment, evaluation, and deployment of bio-inspired peer-to-peer
applications. Anthill supports both a cycle-based simulation
of a protocol as well as distributed deployment using JXTA
[?]. Whereas the former enables large scale simulations with
thousands of nodes, the latter is suitable for evaluation in
real network testbeds such as PlanetLab [?]. The development
of the AntHill project halted in 2002, with the development
focusing on the more generic PeerSim [?] simulator. A well
known load-balancing algorithm, named Messor [?], has been
developed using AntHill. Although AntHill does not simulate
the underlay network, protocol validation under real world
conditions can be achieved using the distributed testbed.

Similar to Anthill, Solenopsis [?] is a distributed mid-
dleware that focuses on swarm-intelligence based protocols.
The platform provides a domain specific language to describe
ant-agent’s behavior and to control the execution on each
node. The framework can operate both in simulation and
in deployment mode, with the only difference being the
number of virtual nodes managed by each host. Solenopsis
employs an event-based simulator, and can reproduce simple
communication latency by means of delayed message delivery;
however, accurate underlay simulation is not supported. In
contrast to the aforementioned platforms, the distributedmid-
dleware presented in [?] provides a general-purpose execution
environment for self-organized agent systems that targetsreal
distributed systems rather than simulations. This framework
also has a narrower focus on resource provisioning: each
agent can specify its requirements in terms of computational
resources, and the systems provides him with a list of suitable
nodes where the agents can migrate to.

Other simulation platforms concentrate on the global dy-
namics of multi agent systems, and are meant as a tools for
studying general complex systems. For example, The Swarm
Simulation System [?] focuses on the evaluation of coordi-
nation mechanisms within swarms: each swarm represents a

collection of agents executing some scheduled actions. The
platform supports hierarchical and nested models with agents
composed of swarms of other types of agents. Similarly,
the Multi-Agent Simulation Suite [?] provides a user-friendly
environment for the development, simulation and analysis
of agent-based systems. MASS includes graphical tools to
assist users with limited programming skills in the creation of
complex multi-agent systems. Finally, NetLogo [?] provides a
generic programmable visual environment to experiment with
complex systems. An extensive library of examples ranging
from biology models to social networks is available. Due to
its simplicity, NetLogo has been widely used to model and un-
derstand the dynamics of complex systems. Unfortunately, as
with the two previous examples, no network-oriented features
are supported.

To foster the use of bio-inspired techniques in distributed
systems, and support the claims of increased adaptiveness and
robustness, we argue that an accurate validation in real-world
network conditions is essential. Comprehensive evaluation can
be achieved through packet-level simulation, which involves
reproducing transmission and delivery delays of each packet,
queuing effects, jitter (i.e. variations of the latency), and
channel bandwidth. Furthermore realistic usage conditions
need to be considered, by means of simulated churn and traffic
patterns: in this regard, even accurate network simulators
sometimes fail to provide implementations of common churn
and failure models. Concerning the simulation of bio-inspired
systems, we argue that the major problem is the lack of
explicit support for bio-inspired features (such as mobile
agents) which complicates the implementation and analysisof
complex multi-agent systems. On the other side, our review of
the existing simulation platforms has highlighted the factthat
current bio-inspired frameworks do not implement realistic
network underlays. Our research is thus concerned with the
development of a novel simulation platform to bridge the gap
between accurate network simulation and bio-inspired system
evaluation. In particular, we focus on bio-inspired peer-to-
peer protocols based on the ant colony paradigm, as it has
proven to be one of the most influential ones. The proposed
solution is based on an existing simulation platform, called
OverSim. OverSim already provides a rich set of features to
facilitate accurate evaluation of peer-to-peer protocols, such as
churn models, realistic underlays and packet-level simulation.
In contrast to other simulators, such as ns-2, OverSim has
the advantage of being strictly focused on P2P protocols,
and thus provides a more comprehensive support for common
features found in these types of distributed systems. Further-
more it comes with a graphical interface that shows the flow
of message and eases protocol debugging. Finally, OverSim
already implements a number of well-known P2P protocols,
and thanks to its modular architecture it can be easily extended
to support bio-inspired ones.

III. F RAMEWORK OVERVIEW

The development of our framework has been driven by
several requirements that have been deemed essential for a



comprehensive validation of networking protocols. We argue
that the cornerstone of simulation is the ability to accurately
reproduce the environment being simulated. In this respect,
the simulation platform must support event based packet level
simulation. Moreover, to ease the comparison with existing
solutions, we deemed important to have many common proto-
cols already implemented. The final requirement is flexibility
and modularity, in order to support a broad range of bio-
inspired applications and ease the integration of new features.
Instead of developing a new platform from scratch, we opted
to extend an existing and popular one, namely OverSim [?],
as it fulfills many of our requirements and provides a modular
architecture that facilitates both the implementation as well as
the evaluation of peer-to-peer overlay protocols.

A. OMNET++ and OverSim

The core of the framework is based on OMNET++ [?],
a discrete time event based simulator. OMNET++ allows for
the simulation of message exchange between user defined
modules. Its flexible architecture is suitable for simulating
network communication, and using of a graphical interface the
user can follow the flow of messages and display the topology
of the system. Basic modules, which are implemented using
C++, can define their response behavior that is executed upon
reception of a message. Compound modules, which may group
several basic modules can be easily created using a simple
definition language called NED and a graphical interface.
OMNET++ is a very popular tools in the field of commu-
nication networks, and several extensions have been created
to support simulation of diverse types of networks, such as
mobile and ad-hoc ones. On top of OMNET++, the OverSim
framework introduces higher-level abstraction to facilitate the
development of peer-to-peer protocols, such as RPC support,
key-based routing, and churn models. OverSim is build upon
a three layers architecture, comprising an underlay (with
packet-level simulation), an overlay, and an application level.
OverSim has been employed within several research projects
and includes implementations of widely known P2P protocols.

B. Framework for bio-inspired algorithms

By reviewing the most representative publications in the
field of bio-inspired network protocols, we identified the
main requirements to conveniently support the development
and evaluation of such algorithms, namely transparent mi-
gration and API for pheromone management. Accordingly,
our framework implements such specific features to ease the
development of ant-inspired protocols, while retaining the
aforementioned benefits of OMNET++ and OverSim platform.

a) Strong, transparent migration: An important aspect of
algorithms and protocols built upon the social insect paradigm
is agent mobility. Whereas traditional protocols are defined by
the logic that resides on each node and by the information
exchanged between peers, swarm intelligence solutions are
defined by the interaction between mobile agents and nodes
mainly act as datawarehouses. Accordingly, a mobile agent ab-
straction has been deemed essential to facilitate the implemen-

tation of such bio-inspired systems. To support this feature,
the proposed framework provides a domain specific language
(DSL) to describe the behavior of each agent and enable strong
transparent migration, namely transferring the agent runtime
state to another node and resume its execution. The behavior
of ant-inspired agents can be easily described, compiled to
C++, and subsequently integrated within an OverSim module
(as depicted Figure 1).

Fig. 1. Toolchain overview

The compiler generates three header files which provide
methods executing the agent’s behavior and the necessary
prototypes that need to be included in the C++ module
class definition. Because agents’ behavior is compiled intoa
native C++ OverSim/OMNET++ module, the complete toolkit
is only required if the behavior of the agents is modified.
Figure 1 depicts the toolchain and the steps required for
compiling the agents’ behavior into an executable simulation.
The generated C++ is not meant to be human-readable, as it
contains instructions for a stack machine: a stack object (which
represents the runtime state during execution of an agent) can
be serialized, transmitted, and deserialized during migration.
The data serialization format is platform independent and
inspired by Bencode, the encoding used by BitTorrent [?]:
this enables the implementation of runtime libraries outside
OverSim and in a programming language different from C++,
in order to simplify deployment of applications using bio-
inspired protocols from a common DSL. A library provided
with the framework includes several functions for the manip-
ulation of the stack as well as of the available value types. In
this regard, the supported types are: numbers (integers, single
precision floating point, long integers, and double precision
floating point), strings, lists (implemented as dynamic arrays),
maps (hash-tables with string keys), and lambdas (to imple-
ment closures). To support automatic memory management
each type is wrapped by a shared pointer (shared_ptr, as
defined by C++ 0xx TR1): wrapping and unwrapping methods
are provided to simplify the conversion between OverSim
and agent’s types. OverSim modules can define methods that
can be invoked by agents, conversely C++ code can start the
execution of agents.

Using natural language, the behavior of an agent is usually
very concise and simple to describe, for example:The agent
migrates across the overlay at random for 5 hops. Each visited
node is stored in a vector carried by the agent: after 5 hops
the agent migrates back to each of the previously visited
nodes. In a traditional network simulator, like OverSim, the
resulting implementation (Figure 2) could be however difficult
to understand, because both the information carried by the



ant as well as its execution state needs to be encapsulated
into a network packet. Furthermore, due to the lack of strong
migration, we need to differentiate between 2 execution states,
namely aforward state (where the ant collects the identifiers of
the visited nodes) and abackward one (where the nodes are re-
visited in reverse order). It is clear that, if the agent’s behavior
becomes more complicated, the complexity of parsing an
incoming message would rapidly grow and further hinder
comprehension of the algorithm.

void Protocol::handleProtocolMessage
(ProtocolMessage* msg)

{
switch(msg->getState()) {
case FORWARD:

if (msg->getHops() == 0) {
msg->setState(1);

} else {
msg->setVisitedArraySize(

msg->getVisitedArraySize()+1);
NodeHandle nh = getThisNode();
msg->setVisited(

msg->getVisitedArraySize()-1, nh);
msg->setHops(msg->getHops() - 1);
sendMessageToUDP(*getRandomNeighbor(), msg);
break;

}
case BACKWARD:

if (msg->getVisitedArraySize() > 0) {
TransportAddress target =
msg->getVisited(

msg->getVisitedArraySize()-1);
msg->setVisitedArraySize(

msg->getVisitedArraySize()-1);
sendMessageToUDP(target, msg);

} else {
delete msg;

}
break;

default:
delete msg;
break;

}
}

Fig. 2. Example protocol (OverSim implementation)

On the contrary, as shown in Figure 3, the proposed domain-
specific language enables a high-level seamless implementa-
tion of the agent. The framework takes care of transferring
the whole execution state between nodes when themigrate
function is invoked. Support for strong transparent migration
is convenient for designers during the prototyping stage, as the
agent protocol (namely the information carried by the ant) may
be subject to frequent changes. An additional benefit of using
a custom language is a better separation of concerns between
peers and agents: whereas ant-like agents define the logic
of the distributed algorithm, peers can solely act as storage
containers.

(var visitedNodes [])
(var remainingHops 5)
(while (> remainingHops 0) (begin

(push visitedNodes (getThisNode))
(set! remainingHops (- remainingHops 1))
(migrate (getRandomNeighbor))))

(while (not (empty? visitedNodes)) (begin
(migrate (pop visitedNodes))))

Fig. 3. Example protocol (DSL implementation)

b) Pheromone: Protocols based on the ant colony opti-
mization (ACO) paradigm usually depend on indirect com-
munication between individual agents, namely stigmergy.
This communication pattern is usually achieved by means
of pheromone trails that mimic chemical trails left in the
environment by real ants. Ants may deposit pheromone on
a path (node connection), to mark the direction toward a
food source (resource provider). The concentration of each
path can be sensed by other agents, and indicates its de-
sirability. Chemical pheromone evaporates, but trails canbe
maintained by continuouslyreinforcement, which involves
depositing new pheromone. To simulate artificial pheromone
trails, our framework library includes a pheromone class that
implements various reinforcement and evaporation models
(linear, exponential, temporal); custom models can also be
used. Peers are responsible for managing pheromone objects:
each object can keep track of multiple trails associated with the
address of nodes in the overlay. Figure 4 shows the creation
of a new pheromone object using an exponential semantic,
with decay factor equal to 0.1 and reinforcement factor equal
to 1.5. More specifically, for a concentrationτ , its new value
τ
′ will be τ

′
← τ × 0.1, andτ ′ ← τ × 1.5, after decay and

reinforcement respectively.

PheromoneSemantic *exp =
new ExponentialPheromoneSemantic(0.1,1.5);

PheromoneTrail *t = new PheromoneTrail(exp)

Fig. 4. Pheromone instance

As shown in Figure 5, an agent can sense the actual
concentration of the trail associated with the path toward
someNeighbor by invoking theget function of a pheromone
object, and deposit new pheromone according to the reinforce-
ment model using thereinforce function.

(var concentration (get someNeighbor))
(reinforce someNeighbor)

Fig. 5. Pheromone sensing and reinforcement

Peers are responsible for simulating the evaporation of
pheromone trails by periodically calling thedecay method.
The semantic of pheronome evaporation depends on the se-
lected decay model.

c) Measurements: OverSim is mainly concerned with
structured overlays; as such it lacks proper support for un-
structured topologies. To overcome this issue and facilitate
evaluation of bio-inspired overlay management protocols that
deal with unstructured networks, methods to measure topologi-
cal properties such as diameter, graph cycles and girth, average
path length, and clustering coefficient have been included in
the framework.

IV. CASE STUDIES

Our framework inherits the modular design of OverSim,
and enables the development of different types of peer-to-peer
protocols. As shown in Figure 6, three protocol architectures
are currently considered: stand-alone overlay, hybrid overlay,



and application. In this section we provide examples for
each protocol architecture to illustrate the benefits of our
framework.

Fig. 6. Overview of supported protocol architectures

Due to space constraints we only provide a detailed dis-
cussion of the hybrid protocol, namely Self-Chord [?], as it
represents an example that clearly leverages the library of
protocols implemented by OverSim.

A. Stand-alone Overlay Protocols

Concerning the development of bio-inspired overlay pro-
tocols we implemented the BlåtAnt [?] algorithm. Beside
maintaining logical links to connect peers together, this pro-
tocols continuously optimizes the topology in order to bound
the diameter of the overlay and to reduce redundant paths.
Pheromone trails, as supported by our framework, are em-
ployed to guide agents across the overlay and to detect failing
peers. The operation of this algorithm can be easily evaluated
in dynamic conditions thanks to the different churn generators
available in OverSim, and its robustness can be compared to
other overlay protocols. By means of the measurement classes
the properties of the topology, such as its diameter and girth,
can be easily determined.

B. Application Protocols

The last scope concerns applications running on top of an
overlay. In this regard, we developed a novel task load bal-
ancing algorithm that employs ant-like mobile agents moving
across a Chord [?] overlay. In contrast to previous examples,
agents are managed independently from the overlay protocol,
but can exploit overlay links to discover neighboring nodes.

C. Hybrid Overlay Protocols

A major benefit of our simulation platform is its tight
integration with OverSim which facilitates the extension of
existing traditional protocols by means of ant-based swarm
intelligence. It is our opinion that novel approaches need not
to replace existing solutions, but can be used to improve some
aspects. Self-Chord [?] represents a self-organized version of
the popular Chord protocol. Chord implements a distributed
hash-table where information can be stored on a peer-to-
peer overlay structured as a ring. Nodes and resources are
assigned with unique identifiers, and each node is responsible
for storing an interval of the resources key space. There is a
strong link between nodes identifiers and resource identifiers,
hence a key look-up operation resolves to a routing of the
query toward the corresponding node. With Self-Chord this
tight link is not present: resources are arranged in a self-
organized way on the ring by means of ant-like agents. Each

agent moves resource identifiers as to maximize the similarity
among identifiers stored on the same node and achieve a global
ordering on the ring. Self-Chord thus implements a different
storage and lookup mechanism than Chord, and strives to
improve balancing over the overlay and the overall robustness
of the system.

1) Overlay Management: Overlay management is achieved
using the Chord protocol. Chord employs a ring structured
topology; each node is assigned a unique identifier randomly
chosen from a 160 bit key space. The protocol maintains
a global ordering of the nodes on the ring following their
identifier. Each node has a successor and predecessor on
the ring, and maintains a finger table with the addresses of
additional nodes to quickly forward messages across many
hops.

2) Resource Management: Whereas the traditional Chord
protocol maps resources to unique identifiers in the same key
space as nodes, with Self-Chord such link is not required. Each
node computes anaverage value of its resource identifiers and
that of neighboring peers. This average, called centroid isused
by agents as a reference for clustering resource identifiersin a
self-organized way: in a stable overlay, centroids are ordered
along the ring.

3) Bio-inspired agents: Bio inspired agents are periodically
started on each node and wander across the ring. On each
visited peer, the agent looks for the resource identifier which
has the least similarity with the current centroid. The agents
picks such identifiers with a probability proportional to the
distance between it and the centroid. Subsequently, the direc-
tion of the agent on the ring is determined: if the identifier
is greater than the centroid, the agent continues by migrating
toward the successor on the ring, otherwise the agent goes
to the predecessor. This behavior results in an ordering of the
centroids on the ring, which is essential for the look-up process
to work.

Figure 7 lists an excerpt from the actual implementation
using the agent programming language. The body of the agent
is a while loop that is repeated as long as the maximum
number of steps (hops in the overlay) is not reached and the
agent is not carrying any resource. ThedoPick anddoDrop
functions are used to implement the aforementioned behavior.
TheshouldDrop function (not detailed in the example code)
is used to determine if the carried object is to be dropped on
the current node, according to a probability proportional to the
similarity between the resource and the local centroid. Con-
versely, theshouldPick function determines if a resource is
to be picked up by the agent. Agents can migrate in two ways:
linearly and logarithmically. In linear mode agents followthe
predecessor and successor links on the ring in order to reacha
suitable node for dropping. Conversely, in logarithmic mode,
the addresses stored in the finger table are employed to quickly
reach distant peers. The logarithmic mode helps speeding up
the convergence of the system toward a stable ordering of the
resource keys on the ring; on the other hand, linear mode is
less susceptible to instabilities and is more suitable for systems
that are almost ordered. Nodes start by creating agents in



(define (doPick) (synchronized
(var c (getCentroid))
(foreach r in (getResources) (begin

(if (and
(shouldPickA c r direction)
(shouldPickB c r)) (begin

(set! resource (pick (key r)))
r
(break)))))))

(define (doDrop) (synchronized
(if (shouldDrop (getCentroid) resource) (begin

(drop resource)
(set! resource nil)
(end)))))

(while 1 (begin
(if resource (doDrop) else (doPick))
(if (= step 0)

(if (not resource)(end))
else

(set! step (- step 1)))
(if (and logarithmicHopping resource) (begin

(migrate (getNextHop (key resource))))
else (begin

(if (= direction LEFT)
(migrate (getPredecessor))

else
(migrate (getSuccessor)))))))

Fig. 7. Excerpt from the Self-Chord agent

logarithmic mode; when a node detects that the network is
stable enough, the following agents are instanced with linear
mode.

4) Look-up process: The look-up process of Self-Chord is
very different from the original Chord protocol. Whereas in
the latter a routing toward the peer whose identifier matches
that of the queried resource is enough to determine a path in
the overlay, the self-organized nature of Self-Chord requires
a different approach. First, the direction of the query (either
forward or backward in the ring) is determined by comparing
the query with the centroid on the current node. Subsequently,
by determining the difference between consecutive centroids in
the neighborhood of the peer, the node computes the number
of steps that are necessary to reach the target peer and the
node either uses the successor and predecessor links or the
finger table.

V. BENCHMARKING

In the previous section we reported on the different types of
protocols supported by our framework. In order to evaluate the
simulation performance and the scalability of the framework
we consider here the basic multi-agent protocol presented in
Figure 3 of Section III. We execute the protocol on simple
overlay network, and compare the total simulation time and
memory requirements with that of OverSim and of PeerSim [?]
(a Java based peer-to-peer simulator). Each node periodically
(every 2 seconds) deploys an agent and sends it to a random
node with a probability of 10%. Each simulation run represents
6 hours of network activity, and for simplicity we considered
a random overlay where each node knows some other nodes
present in the network. Experiments are performed on a
machine running Ubuntu Linux 8.04 (64 bit) equipped with
an Intel Core 2 Duo L7500 processor at 1.6 GHz and 2 GB

of memory.
In OverSim we employ an underlay model based on Internet

latency measurements, with an average latency between peers
of about 100ms. Conversely, with PeerSim a simplistic under-
lay model with random latency between 50ms and 150ms is
considered. In contrast to OverSim, PeerSim neither models
queueing nor bandwidth effects. Figure 8 illustrates the total
simulation time for simulating a peer-to-peer network with
different sizes (100, 1000, and 10000 nodes;bio-inspired
framework referring to the platform presented in this paper).
PeerSim benefits from its simple underlay model, and is the
fastest among the three simulators, running 7 to 12 faster than
OverSim. Compared to the latter, the additional abstraction
layer introduced by our bio-inspired framework to achieve
transparent migration further reduces the performance by ap-
proximately a factor of 2.8 in the test setup; still our framework
enables faster than realtime simulations, with a speed-up factor
of 4 in the 10000 node experiment. The slowdown in both
OverSim and our framework can be attributed to the additional
time spent for memory allocations as the network size is
increased.

100 1000 10000

1

10

100

1000

10000

3
8

4
4
6

5
3
9

5

1
4

1
5
6

1
9
8

3

2

1
3

1
5
9

Number of nodes

S
im

u
la

ti
o
n
 t

im
e 

(s
ec

o
n
d

s)

Bio−inspired 

Framework

OverSim

PeerSim

Fig. 8. Example Protocol - Simulation Time

100 1000 10000

0

100

200

300

400

500

600

700

800

900

1000

1
4
3

1
5
4

8
5
8

1
4
3

1
4
8

8
1
0

1
2
0

1
2
3

1
3
3

Number of nodes

M
ax

im
u

m
 r

es
id

en
t 

si
ze

 (
M

b
y

te
s)

Bio−inspired 

Framework

OverSim

PeerSim

Fig. 9. Example Protocol - Memory Usage

Concerning memory (Figure 9), PeerSim shows the low-
est consumption because of its simplified simulation model.



Whereas PeerSim messagetransmission only involves passing
a reference to an object between nodes, in OverSim full mes-
sage serialization and packet encapsulation (and hence data
duplication) is required to achieve accurate simulation ofthe
underlying network. Our bio-inspired framework performs on
par with OverSim. The huge difference between simulations
with 100 and 1000 nodes, and 10000 nodes can be explained
by the fact that at small scales the memory occupied by
nodes is relatively small compared to the rest of simulation
environment, and thus fits within the default allocation of the
framework (about 150 MBytes). These benchmarks shows that
both the bio-inspired features and the accurate underlay model
of our framework introduce a sensible overhead, nonetheless
large simulations in realtime are still feasible. We shouldstress
that this overhead is outweighed by the benefits introduced
by strong transparent migration support and a high-level
agent description language which simplify the prototyping
and readability of ant-inspired protocols. In this regard,the
additional features provided by our framework alongside with
OverSim (like a graphical user interface, detailed statistics,
and modeling of queueing effects) greatly facilitate rapid
development and evaluation.

VI. CONCLUSION

In this paper we presented a novel framework for the
development and evaluation of swarm-based peer-to-peer pro-
tocols. In contrast to existing solutions our approach allows
for accurate simulation of different network aspects, such

as transmission delays and churn, and integrates with the
OverSim/OMNET++ platform. Because of this highly modular
underlying platform that already implements several protocols,
researchers can easily compare novel approaches with existing
ones. Amongst the benefits of our platform over existing
solutions is the availability of a high-level programming
language which enables seamless implementation of agent-
based protocols, as well an API for pheromone management
and topology measurements. Our current research focuses
on the evaluation of several overlay and application-level
protocols and their comparison with traditional approaches that
are already implemented by OverSim. Future work includes
optimization of the runtime performance, validation of swarm
based underlay routing and experiments with mobile and
ad-hoc networks. Furthermore, other bio-inspired techniques
such as epidemic protocols and genetic algorithms will be
investigated. More generally, our goal is to investigate the
implementation of different bio-inspired patterns, such as the
ones presented in [?]. Our framework is actively developed
and released under an open source license; the source code is
available at http://www.syscall.org/doku.php/overswarm.

VII. A CKNOWLEDGMENTS

This research has been carried out thanks to the financial
support of the Swiss National Science Foundation, fellowship
Nr. 134285.


