
Proactive Information Caching for Efficient Resource
Discovery in a Self-Structured Grid

Amos Brocco
Department of Informatics

University of Fribourg
Fribourg, Switzerland

amos.brocco@unifr.ch

Apostolos Malatras
Department of Informatics

University of Fribourg
Fribourg, Switzerland

apostolos.malatras@unifr.ch

Béat Hirsbrunner
Department of Informatics

University of Fribourg
Fribourg, Switzerland

beat.hirsbrunner@unifr.ch

ABSTRACT
The cornerstone of successful deployment of large scale grid
systems depends on efficient resource discovery mechanisms.
In this respect, this paper presents a grid information sys-
tem supported by a self-structured overlay topology and pro-
active information caching. The proposed approach features
an ant-inspired self-organized overlay construction that main-
tains a bounded diameter overlay, and a selective flooding
based discovery algorithm that exploit local caches to reduce
the number of visited nodes. The caches are periodically ex-
changed between neighboring nodes using an epidemic repli-
cation mechanism that is based on a gossiping algorithm,
thus allowing nodes to have a more general view of the net-
work and its resources. We conducted extensive experimen-
tation that provides evidence that the average number of
hops required to efficiently locate resources is limited and
that our framework performs well with respect to hit rate
and network overhead.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems; H.3.4 [Information Storage and Retrieval]:
Systems and Software—Distributed systems

General Terms
Algorithms, Performance, Experimentation

Keywords
Grid Computing, Resource Discovery, Overlay Networks,
Collaborative Ant Algorithms

1. INTRODUCTION
In recent years, there has been an established shift from

centralized systems, networks and architectures towards de-
centralized approaches. Despite being simpler to design,
centralized solutions suffer from inherent deficiencies, such

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
BADS’09, June 19, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-584-0/09/06 ...$5.00.

as the existence of a single point of failure and therefore
diminished reliability, increased load overhead on centrally
located entities, and lack of flexibility and extensibility be-
cause of rigid system design. These drawbacks have also
spurred developments in the field of distributed computing.
Owing to the availability of low cost high performance com-
puting systems, coupled with increased network bandwidth,
distributed computing systems are now being considered as
realistic alternatives to their traditional centralized counter-
parts. Nonetheless, many of these systems may not yet be
considered as fully distributed, as their operation still de-
pends on centralized services.

Distributed computing systems span from peer-to-peer
systems, to ad hoc networks, mesh networking and also grid
systems. The main concept behind the aforementioned sys-
tems is the collective sharing of resources, whether they refer
to data in peer-to-peer systems or computing resources in
grid systems. When resources are distributed among differ-
ent grid nodes, a mechanism enabling efficient and effective
discovery is required. In particular, this paper focuses on
resource discovery in computing grids.

Initial attempts to solve this problem were towards the di-
rection of porting the centralized computing paradigm in the
distributed realm, namely exploiting periodically updated
centralized indices that hold all resource location informa-
tion, e.g. Napster, and can be accessed by any interested
party. Nonetheless, such solutions require large and power-
ful systems to store all the amount of information generated
by the network, while they also bear the aforementioned
deficits of centralized systems; additionally, if the informa-
tion about resources changes rapidly, then the quality of re-
source discovery may be affected negatively, unless frequent
updates are made to the central index. More recent ap-
proaches realize the need to adopt solutions that explicitly
take into consideration the nature of distributed systems so
as to accommodate the resource discovery needs in a more
coordinated manner, and take full advantage of the benefits
of distribution.

In this respect, as far as fully decentralized resource dis-
covery is concerned, two research streams have been pro-
posed. Both are based on the principle of building an over-
lay network that assists in scaling down the complexity and
size of the underlying peer-to-peer or grid system. A first
approach suggests the construction of structured network
topologies, i.e. topologies with fixed properties. On these
systems, referred to as Distributed Hashtables (DHT) [1, 2],
the overlay network is organized in such a way so that infor-
mation can be easily located by means of keys associated to

11

the underlying network node identifiers. Unfortunately, not
all resources can be easily tagged with a unique key, thus
complex resources such as combinations of hardware and
software configurations, as used in grids, may be difficult to
index using a DHT [3].

A second approach, to overcome the strictness of structured
solutions, involves the use of overlay networks without a
fixed topology that can be classified as unstructured. Un-
structured solutions do not have rigid rules about nodes
joining or leaving the network nor about the location of re-
sources. Nodes locate resources using flooding mechanisms,
namely first by querying their neighbors and then propa-
gating these queries progressively throughout the network.
While initial approaches deploy network flooding to achieve
resource discovery, the lack of scalability of such an approach
and its inverse effect on increasing network overhead has led
to the adoption of more efficient methods to resolve resource
queries, e.g. selective flooding [4], random walks [5], routing
indices [6], semantic overlays [7], etc. Generally speaking,
a fundamental requirement and concurrently an assessment
criterion regarding resource discovery for grid applications
is to ensure limited network overhead and minimal response
time.

In this regard, this paper presents a distributed grid in-
formation system supported by swarm intelligence for effi-
cient resource discovery using flooding-like protocols. The
proposed framework utilizes ant colony algorithms to build,
optimize and maintain a self-structured peer-to-peer overlay
network connecting grid nodes both using a minimal num-
ber of links, and ensuring that the diameter of this overlay
network is bounded. We further augment this framework in
terms of resource discovery efficiency by proactively query-
ing the overlay network with the purpose of locating nodes
with similar capabilities and storing this information in a
local cache for every node, so as to minimize the amount
of queries being propagated throughout the network to find
matching nodes.

The remainder of this paper is structured as follows: Sec-
tion 2 discusses related research in the field of resource dis-
covery in unstructured overlay networks. Section 3 details
the self-organized overlay construction algorithm, whereas
Section 4 presents our proposed proactive resource discov-
ery mechanism. The evaluation methodology for both al-
gorithms is discussed in Section 5, while results and their
analysis are presented in Section 6. Finally, Section 7 sum-
marizes the work presented in the paper and provides some
insight on future research directions.

2. RELATED WORK
Different research projects strive to improve the search

efficiency in unstructured networks by reducing the number
of nodes visited by a query. As we are only interested in
smart forwarding techniques, we will not consider solutions
that are unaware of the semantic of queries (i.e. expanding
ring or random walks [5]). We therefore restrain our focus
to routing indices, experience-based query forwarding, and
clustering.

Although many distributed systems resource discovery mech-
anisms can be equally applied to peer-to-peer and grid sys-
tems as they share many principles, a distinction between
these systems is in the definition of the notion of the re-
source. Whereas in peer-to-peer systems resources typically
refer to files being shared amongst nodes, in grid systems it

is computing resources that are being shared. In grid sys-
tems it is thus beneficial to collect as many query responses
as possible so as to have a large selection of prospective can-
didate nodes to assign grid tasks to, whereas in peer-to-peer
systems it is sufficient to have a small number of successful
responses.

Efficiency of resource discovery in unstructured networks
has been thoroughly analyzed in [8]. By replicating informa-
tion across the network, the chances of success are increased.
Different replication strategies may be adopted, such as path
replication or uniform distribution. Concerning the grid, an
interesting solution is proposed by Antares [9], where a
distributed swarm intelligence algorithm is used to cluster
node references. This solution enhances proximity between
nodes with similar profiles, thus reducing the cost of finding
additional hits once a result is found.

Other solutions [10, 11] suggest using local indices to di-
rect search queries toward nodes that are more likely to sat-
isfy them. The forwarding policy is normally based on satis-
faction indices that are evaluated based on past experiences,
namely successful query responses. Upon this model, differ-
ent propagation strategies can be implemented, as suggested
in [12]. Following similar ideas, [13] describes a grid infor-
mation service based on peer-to-peer technologies that uses
routing indices to direct queries toward the closest known
node that might fulfill the request. The same project also
makes use of a super-peer topology, with nodes belonging
to the same virtual organization connecting to one or more
super-peers, thus further reducing the generated traffic.

Building on some of the concepts of the previously pre-
sented approaches, our framework follows a twofold approach
by first optimizing the overlay network and then by exploit-
ing local indices to improve resource discovery efficiency.

3. OVERLAY MANAGEMENT
The network overlay is maintained by a self-organize col-

laborative algorithm named Bl̊atAnt-S, which improves
our previous algorithm Bl̊atAnt-R [14] by reducing the
overall network traffic while retaining its quality behavior.
The algorithm depends on different species of ant-like soft-
ware agents that move across the network and optimize its
topology both by adding new logical links required to re-
duce the diameter, and also by removing existing links that
do not contribute to the solution. This section provides an
overview of the Bl̊atAnt-S algorithm.

3.1 Peer Logic and Data Structures
The proposed overlay management algorithm is fully dis-

tributed across network peers. Each peer ni contributes to
the optimization of the network by rearranging local links
according to two simple rules for connections and disconnec-
tions, which depend both on partial local view of the overlay
and a user-defined optimization constraint parameter D.

Connection Rule. Consider two non-connected peers ni and
nj in an overlay network G, and dG(ni, nj) the minimal rout-
ing distance from ni to nj in G. A new logical connection
between ni and nj is created if:

d
′
G(ni, nj) ≥ 2D − 1 (1)

Where d′G(x, y) is defined as min(dG(x, y), dG(y, x)).

12

The Connection Rule triggers the creation of new logical
links, which ultimately reduce the diameter of the network
to values < 2D−1. Conversely, a Disconnection Rule is used
to remove redundant links that are not necessary to bound
the diameter.

Disconnection Rule. Consider two connected peers ni and
nj in an overlay network G, i 6= j. Let G′ ← G \ {ni}
and Ni be the set of all nodes adjacent to ni. Peer ni is
disconnected from nj ∈ Ni if:

∃ nk ∈ Ni, k 6= j, |Nj | > |Nk| : d∗G′(nj , nk) + 1 ≤ D (2)

Where d∗G(x, y) is defined as max(dG(x, y), dG(y, x)).
With a global knowledge of the network, even a distributed

application of both rules leads to an optimized overlay with
diameter d, D ≤ d < 2D−1. In order to discover other peers
matching these rules, each peer ni maintains a partial view
of the network in a fixed-size table αi, which retains neigh-
borhood information. This information is continuously up-
dated using the data coming from other nodes, and is used
to evaluate the need for new links between two nodes, or
the redundancy of existing connections. It should be noted
that in fully distributed highly dynamic scenarios, diameter
boundaries might only be approximated; nonetheless, the
average path length will still converge to a value around
2D− 1. A more detailed review of the aforementioned rules
is available in [14].

Furthermore, each peer ni maintains a set of identifiers of
peers inside its neighborhood set Ni: two nodes ni and nj

are considered as connected when both ni ∈ Nj and nj ∈ Ni.
In order to avoid hubs, the maximum size for the neighbor-
hood set is limited, forcing the algorithm to optimize the
network by re-arranging existing links instead of creating a
large number of connections to all but a small number of
peers. To support fault tolerance, each time Ni gets up-
dated, all neighbors are notified by ni.

3.2 Ant Agents
Most of the activities required for the management of the

overlay are carried out by ant-like mobile agents. We dis-
tinguish between different classes of ants, or ant species, de-
pending on the assigned task.

Discovery Ants are used to collect information about
the network and to update the α table on each peer. Each
agent wanders randomly across the network carrying a fixed-
size circular buffer where identifiers of visited peers are stored.
Discovery ants have a limited lifespan, and are respawned
by nodes at regular intervals according to a defined per-node
birth probability.

Construction-Link Ants are sent by a peer nj wanting
to connect to the overlay. If the recipient has already reached
the maximum number of allowed links, the ant is forwarded
to the neighbor with the lowest degree. When some peer
ni accepts a connection request, the requesting peer nj is
added to the neighborhood Ni set and the ant is sent back
to nj , where ni is conversely added to Nj .

Optimization-Link Ants are used to create links be-
tween nodes according to the Connection Rule. Similarly to
construction ants, a peer nj wanting to connect to a peer
ni sends an ant to the latter, but in contrast to what oc-
curs with other species, ni cannot forward the request to its
neighbors, but just accept or reject it.

Figure 1: Recovery after node ni leaves the network

Unlink Ants remove existing links between peers either
because the Disconnection Rule applies, or because one of
the peers wants to leave the network. An Unlink ant travels
to its target peer and removes all information about the
source peer from the local α table and neighborhood set Ni.

Update Neighbors Ants are generated by a node ni

when its neighborhood set Ni changes. These ants travel to
every neighbor nj ∈ Ni and update the information about
ni in the respective αj tables.

Ping Ants are periodically exchanged between nodes to
keep connections alive in low traffic situations.

3.3 Pheromone Trails
When ant agents move between peers, they leave pheromone

trails on both the starting and the destination node. By
simulating evaporation, these trails are used to keep track
of whether a neighbor is still alive, as well as to ensure that
the network is thoroughly explored, i.e. no parts of it are
left unvisited. Pheromone trail τ is reinforced according to
the formula τ ← 1. Conversely, evaporation updates the
concentration of the trail as τ ← τ ∗ ψ with ψ < 1.

On each node ni, and for each neighbor nj , a pheromone
trail γ[nj] is reinforced by ants traveling from ni to nj . Dis-
covery ants leaving peer ni will then less preferably choose
nj , and instead follow a path to a neighbor with a corre-
sponding trail of lower concentration.

Pheromone trails are also used to detect abrupt node dis-
connections, i.e. crashes. For each neighbor nj in Ni, a β[ni]
trail is reinforced by ants traveling from nj to ni. When a
trail completely evaporates, the corresponding neighbor is
assumed to have left the network and subsequently a recov-
ery procedure is started.

If the amount of traffic is not sufficient to keep pheromone
trails from completely evaporating, ping ants are sent be-
tween nodes. In particular, ni node will send a ping ant to
its neighbor nj as soon as pheromone concentration on trail
γi[nj] falls under a predefined threshold. This will reinforce
both γi[nj] and βj [ni].

3.4 Recovery Procedure
When a node ni leaves the network, its neighbors must

rearrange their connections in order to avoid partitioning.
If ni leaves the network properly, it can initiate the recovery
procedure by itself. Conversely, if ni unexpectedly quits the
network (for example, because it crashed), all of its neigh-
bors will start the recovery procedure as soon as the dis-
appearance of ni is detected (i.e. complete β pheromone
evaporation).

The recovery procedure consists in sending Construction-

13

Link ants to other known neighbors of ni in order to re-
establish proper connectivity among them. In particular,
ant agents try to connect all nodes with a minimal number
of links by using a ring formation. Figure 1 depicts an ex-
ample situation where node ni leaves the network (a) and a
recovery procedure is executed (b).

4. PROACTIVE RESOURCE DISCOVERY
The motivation behind the proposed approach for an opti-

mized grid resource discovery mechanism, is the observation
that the network overlay maintained by Bl̊atAnt-S pro-
vides bounded length communication paths between peers
while retaining a low per-node degree. Being able to ac-
tively bound the diameter of the network allows to better
fine-tune resource discovery query TTL (Time-To-Live, as
hops in the overlay), thus limiting the overall traffic. Mean-
while, obtaining good hit rates would still require visiting a
large number of nodes. Accordingly, the aim of the proposed
proactive resource discovery approach is to increase the hit
rate with minimal network overhead.

4.1 Peer Similarity
Each node in the grid shares a set of its resources with

other nodes, which can be referred to as the resource profile
of the node. A resource profile can be viewed as a collec-
tion of tuples, expressed as a vector, referring to different
resource aspects (i.e. CPU architecture, amount of memory,
etc.) and their availability. When users submit jobs to nodes
that do not have the necessary resources to carry them out,
resource discovery procedures are initiated. Resource dis-
covery is the process of finding peers whose profile matches
a given search query. Unfortunately, there are many situ-
ations where an exact match might not be possible: it is
thus necessary to determine resource profiles that, although
different from the one required by the query, may still fulfill
the task. In order to easily determine if two resource pro-
files, expressed as vectors, share some similarities, we use a
cosine similarity measure.

Similarity Function Λ. Given two grid nodes ni and nj ,
their resource profile vectors pi and pj , a suitable scalar
product operation, and a norm ‖.‖, we consider a similarity
function Λ(pi, pj) ∈ [0, 1], such that

Λ(pi, pj) =

8

<

:

pi·pj

||pi||||pj||
if

pi·pj

||pi||||pj ||
> 0

0 otherwise

The scalar product and the norm have to be defined such
that the profiles are equivalent iff Λ(pi, pj) = 1, and sim-
ilar iff this value is close to 1 according to a user-defined
threshold.

4.2 Similar Peers Cache
Each node keeps a cache table of size csize storing iden-

tifiers and timestamps of other nodes with a similar profile.
This cache is updated at regular intervals by starting pro-
active resource discovery queries to search for other nodes in
the network having a similar profile. Results from proactive
queries include both the identifier and the timestamp of the
matching node.

The collection of all peer caches can be viewed as a second-
level overlay, where each node’s neighborhood is composed
of peers with similar resource profiles. Resource discovery

is therefore enhanced because a pool of potential matching
resources is immediately available.

4.3 Cache Merging
Maintaining up to date cache information through pro-

active resource discovery queries may lead to high network
overhead. We thus introduce a cache merging mechanism
that enables nodes to share their cache contents with peers
having similar profiles. This avoids flooding the network
with proactive queries, in favor of a pairwise exchange of a
small number of node identifiers.

The process itself is inspired by the Newscast[15] gossip-
ing algorithm. At regular intervals, each node chooses a peer
at random within its cache contents and initiates a merging
procedure. The initiating peer requests the content of the
remote cache, merges them with the local cache, and retains
at most the csize − 1 entries with the highest timestamp
(i.e. the most recent information). Both the initiating node
and the remote node will then replace their own caches with
the resulting set. Finally, the initiating node will add the
remote peer identifier, along with an updated timestamp to
its cache. Conversely, the remote peer will add the initiating
node identifier and updated timestamp to its cache.

4.4 Resource Discovery
Resource discovery is performed using a limited and selec-

tive flooding algorithm. Limited flooding implies that nodes
keep track of received queries, and avoid forwarding queries
that have already been processed. Selective flooding means
that, at each step, the query is forwarded only to a subset
of all neighbors. In our approach, the subset is constructed
by uniformly sampling the neighborhood set.

We consider the query as successful when at least one
node matching the query is found; conversely, each node
found counts as a hit. During proactive queries, each hit
generates a reply message back to the originating node, in
order to update the peer cache.

The peer cache itself is exploited by non-proactive searches:
when a matching node is found instead of stopping the search,
the query jumps to the node cache and continues for an ad-
ditional number of steps. In this way, there is a high prob-
ability of reaching additional hits because of the way the
cache has been constructed. Similarly to Bl̊atAnt-S ants,
resource discovery queries also contribute in reinforcing β

and γ pheromone trails as they propagate across the net-
work.

5. EVALUATION
We conducted extensive evaluation of both the overlay

management algorithm, and its combination with the re-
source discovery protocol. In particular, two main aspects of
the system are considered: the ability of the overlay manage-
ment algorithm to keep a connected overlay with a bounded
diameter in a dynamic scenario, and the efficiency of re-
source discovery. Additionally, the impact on bandwidth
consumption of both the overlay management tasks and the
proactive caching in respect to the overall resource discovery
is also studied.

5.1 Overlay Construction
The overlay is constructed starting from a random lattice

consisting of 10 nodes, which constitute the pool of well-
known connection points where any node wanting to join

14

Optimization parameter D 5
α table size 40
max(|Ni|) ∀i 8
Discovery Ant lifespan 50
Discovery Ant respawn interval 150
Discovery Ant birth probability 0.01
Discovery Ant vector length 20
Pheromone decay ψ 0.991
Ping Ant threshold 0.25

Table 1: Overlay Construction Parameters

addresses its request to. At the beginning of the simulation
a number of additional nodes is added, up to a total of 1281
nodes. The optimization parameter D for all scenarios is
set to 5, thus the expected average path length is around
2D − 1 = 9.

Simulation timing is computed by means of iterations:
at each iteration the whole population of ants may travel
one hop in the overlay. Table 1 lists the parameters used
by Bl̊atAnt-S during all simulations. Due to space lim-
itations, the choice of these values is not discussed here;
nevertheless, note that different sets of values do not sig-
nificantly affect the qualitative behavior of the presented
results. Pheromone evaporation is simulated by updating
their concentration at each iteration.

To simulate a dynamic network behavior, a new node
joins the network with an average period of 50 iterations.
Conversely, each 100 iterations a node leaves the network
and one crashes (i.e. leaves the network abruptly). Conse-
quently, the size of the network remains stable.

5.2 Resource Discovery Scenarios
Simulation of resource discovery is performed by randomly

choosing both a starting node, and a random search profile.
Several simulation runs of 75000 iterations each were evalu-
ated: a set of 10 search queries is started every 25 iterations,
beginning at iteration 500, resulting in 29800 queries per
run. Different scenarios were simulated with varying values
for the parameters of our resource discovery algorithm, as
listed in Table 2. In particular, the considered parameters
are noted as follows:

- TTL: resource discovery query time-to-live (hops);
- FW: selective forwarding sample size;
- M-int: cache merge interval;
- P-int: proactive queries interval;
- C-TTL: TTL while traveling within the cache;
- C-FW: FW within the cache;
- P-TTL: proactive queries TTL;
- P-FW: proactive queries FW.

Each node is assigned a profile according to a uniform
distribution, such that each profile is shared on average by
27 nodes. Accordingly, in all scenarios using the proactive
caching, the cache size was set to 5 entries. The query TTL
of all scenarios has been set to 9 because of the expected
average path length as previously discussed.

5.3 Traffic Evaluation
In order to evaluate the traffic generated by our overlay

management algorithm, we estimated the typical size of ant-
like agents as follows:

- Discovery: 420 bytes plus 24 bytes/visited node;
- Construction-link: 444 bytes;

T
T

L

F
W

M
-i
n
t

P
-i
n
t

C
-T

T
L

C
-F

W

P
-T

T
L

P
-F

W

A1 9 3 - - - - - -
A2 9 4 - - - - - -
A3 9 5 - - - - - -
A4 9 all - - - - - -
B1 9 3 2500 25000 3 3 8 3
B2 9 4 2500 25000 3 3 8 3
B3 9 all 2500 25000 3 3 8 3
C1 9 4 2500 25000 1 5 8 3
C2 9 4 2500 25000 2 5 8 3
C3 9 4 2500 25000 5 2 8 3
D1 9 4 10000 25000 3 3 8 3
D2 9 4 25000 25000 3 3 8 3
E1 9 4 2500 12500 3 3 8 3
E2 9 4 2500 37500 3 3 8 3
E3 9 4 2500 50000 3 3 8 3
F1 9 4 2500 25000 3 3 6 4
F2 9 4 2500 25000 3 3 9 4

Table 2: Evaluation Scenarios

- Optimization-link: 420 bytes;
- Unlink: 420 bytes;
- Update Neighbors: 420 bytes plus 24 bytes/neighbor.
- Ping: 420 bytes;

Accordingly, for the resource discovery task, we considered
the following estimations:

- resource discovery queries: 1024 bytes;
- resource discovery query replies: 456 bytes;
- cache merge: 420 bytes plus 24 bytes/cache entry;
- ping: 352 bytes.

These estimations include both the size of an IPv6 header
(288 bytes), and also a UDP header (128 bytes). The ob-
tained traffic results are based on an average cost over the
total number of queries, and include the overlay manage-
ment, the proactive caching task (if applicable), and resource
discovery. The bandwidth consumed by the overlay and
caching does not depend on the resource discovery activity,
and it should thus be considered as a fixed cost distributed
among all queries.

6. RESULTS
Having detailed the parameters of the considered evalua-

tion scenarios, we present and discuss here the correspond-
ing results. The first part focuses on the performance of
the overlay management algorithm, while the second part
analyzes the efficiency of the proposed resource discovery
approach.

6.1 Overlay Management
Three performance metrics have been considered to eval-

uate the overlay management algorithm: resulting average
path length (AVPL), diameter and generated traffic. We
compare the original Bl̊atAnt-R [14] algorithm with the
improved Bl̊atAnt-S version, which has also been used for
the resource discovery evaluation. Traffic results refer to the
overlay management tasks only, and have been measured
through simulations without resource discovery.

As shown in Figure 2, Bl̊atAnt-S obtains better results
than Bl̊atAnt-R, both in diameter, and average path con-

15

Figure 2: Average Path Length and Diameter

Figure 3: Overlay Management Traffic

vergence with values close to 11 and 2D−1 = 9 respectively.
The network bootstrap phase reflects on both the diameter
and the average path length values, which increase up until
around iteration 1000. As soon as all nodes are connected
to the network, effects of the optimization become visible.

Additionally, as shown in Figure 3, the improved algo-
rithm also consumes less bandwidth, with approximately 5
KB less traffic per iteration. It is worth noting that the
generated traffic refers to the entire overlay, thus it aver-
ages to approximately 18 bytes per node per iteration for
Bl̊atAnt-S.

Although not shown in the figures, we also measured the
total number of links in the resulting networks, namely 7400
for Bl̊atAnt-R, and 7000 for Bl̊atAnt-S. These results
further confirm that overlays maintained by the improved
algorithm are more optimized and contain less redundant
links.

6.2 Resource Discovery
Evaluation of the resource discovery efficiency has been

conducted by means of the following assessment criteria:
success rate (Figure 4), hit rate (Figure 5), cost per query
(Figure 6), and cost per hit (Figure 7).

Graphs regarding communication costs illustrate the ef-
fective resource discovery cost as well as the overlay and the
proactive caching management costs. We consider a resource

Figure 4: Query Success Rate

discovery query as being successful if at least one matching
result is found; conversely, we count each distinct match as
a hit.

Without cache (A1,A2,A3,A4).
Before assessing the performance of the proactive informa-

tion caching strategy, we experimented with different scenar-
ios using only the limited and selective forwarding strategy.
If a query encounters a matching node it is not further for-
warded. As expected, the wider the spreading of the query,
the more hits are found and the more traffic is generated.
In the first scenario, the cost of overlay management also
makes for a noticeably larger part of the overall traffic: the
reason behind this behavior is the fact that a larger number
of Ping Ants are exchanged between nodes because of the
reduced application traffic (i.e. resource discovery).

Although not depicted in the figures, we also evaluated
additional scenarios where forwarding was not stopped once
a match was found, which did not however produce signifi-
cant variations.

With cache (B1,B2,B3).
The proactive caching strategy performs much better than

the traditional approach. A slight increased average cost
per query, resulted in a noteworthy increase in the hit rate,
which almost doubled in B1 and B2 in comparison to A1,
respectively A2. As a consequence, the cost per hit is sig-
nificantly reduced. Evidently the success rate remains un-
changed in respect to the previous results, because cache
information is exploited only once a match is found, and
therefore only to increase the hit rate. Scenario B1 shows
the same behavior as A1, with respect to the overlay man-
agement traffic. It is worth noting that B2 achieves the same
hit rate as A3 while producing significantly less traffic.

After having assessed the improvements derived by our
proactive caching approach, we perform a sensitivity anal-
ysis of the parameters affecting the caching behavior. In
the following analysis we use scenario B2 as a baseline for
comparison, being the most representative one.

Cache hops influence (C1,C2,C3).
These scenarios are used to evaluate the impact of differ-

ent cache navigation strategies (i.e. different C-TTL and
C-FW). From the analysis of the results it is clear that

16

Figure 5: Search Hit Rate

Figure 6: Cost per Query

no particular strategy significantly outperforms the others.
Nonetheless, a balanced strategy, as in scenario B2, is con-
firmed as being optimal, achieving the highest hit rate.

Merge frequency influence (D1,D2).
Cache merges promote spreading and sharing information

across the nodes as well as replication. Additionally, merges
also help removing old entries from the cache, thus avoiding
dangling references to nodes that have already left the net-
work. Decreasing the merge frequency lowers the amount of
valuable information in the cache, which results in less hits
being reported.

Proactive queries frequency influence (E1,E2,E3).
As expected, the more frequent the proactive queries are

spawned on the network, the better the information in the
cache is. In particular, scenario E1 realizes the best hit rate
(44%) with the highest percentage of hits found in the cache
(51%). Clearly, a counter-effect of higher frequencies is an
increased cost per query.

Proactive queries spreading (F1,F2).
The last result set concerns experiments with varying for-

warding limits for proactive resource discovery queries. Ob-
viously, if proactive queries travel deeper in the network,
more hits are found at the expense of more traffic. Nonethe-
less, by comparing B2 and F2, we can argue that the small

Figure 7: Cost per Hit

benefits of an increased proactive query TTL do not justify
the additional bandwidth consumption.

7. CONCLUSIONS
In this paper we presented an efficient resource discov-

ery scheme using proactive information caching on a self-
structured grid overlay. The overlay is maintained using a
fully distributed ant-based algorithm, called Bl̊atAnt-S,
which ensures bounded average path length with minimal
per-node degree. Furthermore, we compared the behavior of
the algorithm with its previous version, namely Bl̊atAnt-

R, and established its improved performance both in respect
of the quality of the generated overlay, and concerning net-
work bandwidth requirements.

In regard to grid resource discovery, we recognized the
need to achieve satisfactory hit rate results without imposing
significant network overhead. We thus proposed an efficient
flooding-based mechanism supported by proactive informa-
tion caching combined with a gossip-based spreading pro-
tocol. We evaluated the aforementioned approach through
extensive experimentation and assessed its merits compared
to traditional flooding methods. In particular, we have been
able to realize improvements in the hit rate with little im-
pact on the generated traffic.

Although the impact of overlay management and pro-
active caching on the overall traffic cost has shown to be
negligible in the presented scenario, an evaluation exploit-
ing different network scenarios would be of great interest. As
such, future research will also focus on adaptive strategies
to control the proactive caching parameters, such as query-
ing and merging intervals, according to monitored network
conditions. Furthermore, a different application domain of
the proposed framework that we plan to engage ourselves
with is that of load balancing on grids. Although similar
in principle to the problem tackled in this paper, different
and more tailored solutions could be developed. This work
is being developed in the context of the SmartGrid project
[16], which aims at exploiting collaborative intelligence al-
gorithms in a grid management middleware.

8. ACKNOWLEDGMENTS
This research has been carried out thanks to the financial

support of the Swiss Hasler Foundation in the framework of
the “ManCom Initiative”, project Nr. 2122.

17

9. REFERENCES
[1] I. Stoica, R. Morris, D. Karger, F. M. Kaashoek, and

H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In SIGCOMM
’01: Proceedings of the 2001 conference on
Applications, technologies, architectures, and protocols
for computer communications, volume 31, pages
149–160, New York, USA, October 2001. ACM Press.

[2] A. Rowstron and P. Druschel. Pastry: Scalable,
decentralized object location, and routing for
large-scale peer-to-peer systems. Lecture Notes in
Computer Science, 2218, 2001.

[3] M. Castro, M. Costa, and A. Rowstron. Debunking
some myths about structured and unstructured
overlays. In Proceedings of the 2nd USENIX
Symposium on Networked Systems Design and
Implementation (NSDI ’05), Boston, MA, May 2005.

[4] S. Arunkumar and R. S. Panwar. Efficient broadcast
using selective flooding. In INFOCOM, pages
2060–2067, 1992.

[5] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker.
Search and replication in unstructured peer-to-peer
networks. In ICS ’02: Proceedings of the 16th
international conference on Supercomputing, pages
84–95, New York, NY, USA, 2002. ACM.

[6] A. Crespo and H. Garcia-Molina. Routing indices for
peer-to-peer systems. Distributed Computing Systems,
2002. Proceedings. 22nd IEEE International
Conference on, pages 23–32, 2002.

[7] A. Crespo and H. G. Molina. Semantic overlay
networks for p2p systems. Technical report, Stanford
University, 2002.

[8] S. Tewari and L. Kleinrock. Analysis of search and
replication in unstructured peer-to-peer networks. In
Proceedings of the 2005 ACM SIGMETRICS
international conference on Measurement and
modeling of computer systems, volume 33, pages
404–405, New York, USA, June 2005.

[9] A. Forestiero, C. Mastroianni, and G. Spezzano.
Antares: an ant-inspired p2p information system for a
self-structured grid. In BIONETICS 2007 - 2nd
International Conference on Bio-Inspired Models of
Network, Information, and Computing Systems,
Hungary, December 2007.

[10] B. Yang and H. Garcia-Molina. Improving search in
peer-to-peer networks. In Proceedings of the 22 nd
International Conference on Distributed Computing
Systems (ICDCS’02), pages 5–13, Washington, DC,
USA, 2002. IEEE Computer Society.

[11] V. Cholvi and P. Felber. Efficient search in
unstructured peer-to-peer networks. In European
Transactions on Telecommunications: Special Issue on
P2P Networking and P2P Services, page 2004, 2004.

[12] A. Iamnitchi and I. Foster. A peer-to-peer approach to
resource location in grid environments. Grid resource
management: state of the art and future trends, pages
413–429, 2004.

[13] D. Puppin, S. Moncelli, R. Baraglia, N. Tonellotto,
and F. Silvestri. A grid information service based on
peer-to-peer. In Jose C. Cunha and Pedro D.
Medeiros, editors, Euro-Par, volume 3648 of LNCS,
pages 454–464. Springer, 2005.

[14] A. Brocco, F. Frapolli, and B. Hirsbrunner. Bounded
diameter overlay construction: A self organized
approach. In IEEE Swarm Intelligence Symposium.
SIS 2009, IEEE, April 2009.

[15] M. Jelasity and M. van Steen. Large-scale newscast
computing on the internet. Technical Report IR-503,
Vrije Universiteit Amsterdam, Department of
Computer Science, October 2002.

[16] Y. Huang, A. Brocco, B. Hirsbrunner, M. Courant,
and P. Kuonen. Smartgrid: A fully decentralized grid
scheduling framework supported by swarm
intelligence. In 7th Int. Conf. on Grid and Cooperative
Computing. GCC2008, October 2008.

18

