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Abstract An important concern for an efficient use of distributed computing is
dealing with load balancing to ensure all available nodes and their shared resources
are equally exploited. In large scale systems such as volunteer computing platforms
and desktop grids, centralized solutions may introduce performance bottlenecks
and single points of failure. Accordingly fully distributed alternatives have been
considered, due to their inherent robustness and reliability. In extremely dynamic
contexts, scheduling middlewares should adapt their job scheduling policies to
the actual availability and overcome the volatility and heterogeneity typical of
the underlying nodes. To deal with the dynamicity of a large pool of resources,
self-organizing and adaptive solutions represent a promising research direction.
Solutions based on bio-inspired methodologies are particularly suitable, as they
inherently provide the desired features. In this paper we present a fully distributed
load balancing mechanism, called ozmos, which aims at increasing the efficiency
of distributed computing systems through peer-to-peer interaction between nodes.
The proposed algorithm is based on a Chord overlay, and employs ant-like agents
to spread information about the current load on each node, to reschedule tasks from
overloaded systems to underloaded ones, and to relocate incompatible tasks on
suitable resources in heterogeneous grids. By means of several evaluation scenarios
we demonstrate the effectiveness of the proposed solution in achieving system-wide
load balancing, both with homogeneous and heterogeneous resources. In particular
we consider the load balancing performance of our approach, its scalability, as well
as its communication efficiency.

Keywords Load balancing · Distributed Computing · Peer-to-Peer Networks

This research has been supported by the Swiss National Science Foundation
fellowship nr. 134285

Amos Brocco
Information Systems and Networking Institute, Department of Innovative Technologies
University of Applied Science of Southern Switzerland (SUPSI)
Via Cantonale, CH-6928 Manno, Switzerland
Tel.: +41-58-666 6589
E-mail: amos.brocco@supsi.ch



2 Amos Brocco

1 Introduction

The last decade has seen an unprecedented growth in the performance and number
of systems connected to the Internet. The availability of high bandwidth connec-
tions has opened up new possibilities for leveraging the combined processing power
and data storage capacity of millions of computers: distributed applications and
solutions that once targeted high performance systems run by universities and
research institutions can now count on the willingness of thousands or millions of
users that share their own resources. This form of large scale distributed comput-
ing is commonly referred to as peer-to-peer computing [31] or volunteer computing

[1,20]. These systems, which are also known as desktop grids, require little in-
frastructure and fewer investments than traditional grids, but trade their huge
amount of available resources and raw processing power for a less dependable and
highly volatile environment [35]: nodes can unexpectedly disconnect from the net-
work, or reduce the amount of shared resources when the owner starts new local
processes with higher priority. In contrast, traditional platforms such as grids, of-
fer a higher quality of service, performance guarantees, and security in exchange
for higher ownership, running, and management costs. Furthermore, whereas vol-
unteer and peer-to-peer computing systems are highly heterogeneous and mainly
targets embarrassingly parallel problems with few or no dependencies on the un-
derlying platform, grids provide a greater level of configurability and homogeneity.
In desktop grids, heterogeneity originates both from diverse runtime platforms and
from variable communication facilities: each participating computer may not only
share a different set of resources (hardware and software) but can also enjoy differ-
ent connectivity with the rest of the system (bandwidth, latency). The complexity
required to overcome these differences is exacerbated by the fact that applications
often need to be tailored for the target platform (clusters, grids, clouds), thus an
increase in the diversity of end systems may require an additional development
effort. However, even though peer-to-peer and desktop grids cannot ensure the
dependability, efficiency and security of centralized solutions, they still represent a
suitable alternative to implement a computing infrastructure with smaller invest-
ments for a number of situations, e.g. on-demand video streaming [7] or analysis of
large datasets [16]. Generally speaking, the choice of a computing platform comes
down to the nature of the project: in this regard, traditional grid and desktop grid
technologies should be considered as complementary, particularly in the light of
a convergence between the two paradigms, as observed in [24]. Even in the realm
of cloud computing, which is characterized by metered on-demand dynamic pro-
visioning [30] supported by large datacenters, there have been proposals for fully
distributed implementations [4,15]. As a consequence, it is still worth researching
methods to exploit the benefits of decentralization and on solutions to increase its
efficiency.

To maximize the throughput and overall efficiency of a large pool of com-
puting resources it is necessary to by employ intelligent scheduling mechanisms.
Allocation of tasks on the most appropriate resources is thus a prerogative to an
optimal usage of distributed computing networks [40]. Whether the underlying
platform is a traditional or a desktop grid, in order to make an effective use of
distributed computing it is important to define scheduling policies that support
load balancing and avoid overloading just a fraction of the available computers. In
this sense, traditional grid systems have an advantage over their distributed coun-
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terparts: schedulers are typically centralized, and enjoy full knowledge about the
resources available within the virtual organization as well as their current status.
User demands can thus be precisely matched to fulfill QoS agreements such as
maximum response time, price, etc. Centralized solutions also simplify accounting
and security, while allowing providers to enforce strict usage policies. However,
centralized models also create single points of failure and incur in higher manage-
ment costs in order to maintain a reliable infrastructure. For this reason, research
has started to investigate solutions that strive to reduce deployment costs, in-
crease reliability, and meet dynamic users’ needs, envisioning flexible, autonomic,
and self-manageable grids [2].

To tackle the problem of optimal scheduling, in this paper we present a fully
distributed task load balancing mechanism for desktop grids that employs bio-
inspired techniques to provide autonomous and self-organized operation. Our so-
lution is based on the principle of osmosis, and employs ant inspired agents to
reallocate tasks among the available resources. Osmosis is a self-regulatory pro-
cess at the base of several natural processes, in particular of cellular exchanges.
The algorithm, named ozmos, is based on a variation of this process running on a
Chord [42] overlay, and achieves load balancing by relocating tasks between nodes
both in homogeneous and in heterogeneous grid systems. This paper extends our
previous work [10] with additional evaluations and a comparison with another
fully distributed and bio-inspired load balancing mechanism [34]. The remaining
of this paper is organized as follows: Section 2 discusses related work concerning
distributed task load balancing with a focus on bio-inspired approaches. Section 3
presents the proposed load balancing solution, while Section 4 and 5 present the
considered evaluation scenarios and discuss the respective results. Finally Section
6 summarizes our conclusions on this work and provides some insights on future
work. For simplicity, in the following of this paper we use the terms task and job

interchangeably while referring to requests for resource allocations submitted to a
distributed computing system.

2 Related work

Regardless of the computing infrastructure, be it either a traditional grid or a
volunteer computing platform, resource management and scheduling remain im-
portant concerns to make efficient use of the available processing power. Even when
dealing with very large pools of dispersed resources, as in the case of desktop grids,
it is critical to assign jobs to the most appropriate nodes and avoid overloading just
some of the systems. As our work is concerned with fully distributed solutions, in
this section we put or focus on existing mechanisms for decentralized scheduling
and load balancing, which mainly target grid computing. Scheduling in grids is
managed by meta-schedulers, which assign jobs to available resources according to
their existing local scheduling policies. An additional realm of our research is load
balancing, which can be performed either statically or dynamically by the sched-
uler [5]: because in desktop grids resources and loads change with time and their
exact characteristics are not known a priori [29], it makes sense to only consider
the latter.

In traditional grid solutions, such as [23,38], centralized or hierarchical meta-
schedulers are employed: these schedulers have access to a complete and up-to-date
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knowledge about available resources, and can therefore perform optimal scheduling
decisions. A form of hierarchical scheduling can be employed even in peer-to-peer
scenarios: for example, in [28] an adaptive load balancing strategy for a super-peer
based P2P grid is detailed. Super-peers are responsible for managing the resources
of other nodes and exchanging information among each other. For each job, super-
peers determine the estimated completion times for each of the neighboring nodes,
and eventually migrate the job to the most appropriate one. Unfortunately, draw-
backs arise from these designs: super-peers can create performance bottlenecks
that hinder the scalability of the system and represent single points of failure that
affect all managed peers and the robustness of the whole grid. In the light of these
issues, research has proposed distributed approaches that strive to overcome the
flaws of centralized solutions while retaining an acceptable quality of service with
minimal communication overhead [14].

Examples of fully distributed scheduling with load balancing include [11], which
introduces a protocol based on a cost-for-execution heuristic, [3], where a node
retains jobs or reschedules them to its neighbors according to the actual load, and
[3], where each node employs a heuristic based on local load to decide if a job is to
be delegated to a neighbor. Another solution is presented in [41], and employs a
decentralized and adaptive scheduling strategy with load balancing capabilities to
equalize the expected execution time across nodes. Similarly, in [21], an adaptive
decentralized algorithm based on evolutionary techniques is proposed. Finally in
[26] a P2P computing system based on a resource trading model is presented: the
proposed solution replaces centralized resource management and job submission
with a distributed matchmaking process that mimics the operation of a trade
market. A comparable scheduling and load balancing mechanism is discussed in
[19]: balancing is achieved through an economic model where agents attempt to
achieve their goals and obtain the maximum profit from the rest of the system.

Distributed solutions exhibit noticeable complexity, because they need to mini-
mize the costs of communication and synchronization while performing scheduling
decisions in a dynamic environment using partial and possibly outdated informa-
tion. Accordingly, self-organizing methodologies such as bio-inspired techniques
are increasingly being considered. In this regard, some projects view the grid as a
complex system where autonomic scheduling and load balancing solutions can be
achieved by means of self-organizing agents executing on a peer-to-peer overlay. In
[13], the scheduling process is modeled after a biological system: jobs are divided
in subtasks that are assigned to an agent. Each agent is deployed on the grid in
order to carry out the computation on suitable computational resources. Nodes
can request work from other peers, effectively creating a task hierarchy in the net-
work. Furthermore, each peer can adapt the amount of requested tasks based on
past experience. A similar approach is presented in [18], with a meta-scheduling
architecture based on ant-like agents that migrate on a DHT overlay: the struc-
tured overlay is used to maintain multicast communication trees and efficiently
track jobs delegated to other nodes.

Another well known example of load balancing mechanism based on artificial
life behaviors is Messor [34], which builds upon the swarm intelligence [8] and ant
colony [17] paradigms. Messor nodes deploy ant-like agents in order to discover
suitable resources and eventually trigger load balancing. If a node is overloaded,
the goal of the deployed agent is to find an underloaded node; on the contrary,
the goal of the agent is to look for overloaded systems. Agents wander on the
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network and collect information about the load of visited nodes: this information
is stored on each node, and can be exploited by other agents in order migrate
toward nodes of major interest. After some time, and when a node with the de-
sired load is found, the balancing takes place, and tasks are transferred from the
most loaded discovered node to the least loaded one. Algorithms similar to Mes-

sor have been adopted by other platforms such as ARMS [12] or [39]. ARMS

uses a swarm of ants that spread information about nodes connected to a hier-
archical overlay. Each node is managed by a local scheduler that communicates
with other peers in order to exchange tasks and balance the load. Another similar
scheduling framework is proposed in [25], where ant-like agents are deployed upon
submission of a task and wander on the network looking for suitable resources.
The goals of each agent are to discover remote resources and to minimize both
the overall makespan (the maximum time required to complete all jobs) and the
response time. The ant paradigm is also employed in [32], by means of agents
that wander on the network looking for resources that provide the best match for
the requirements of a job. Ant agents can communicate through stigmergy, i.e. by
leaving artificial pheromone trails indicating the fitness of each inspected resource.
Other bio-inspired techniques, such as particle swarm optimization [37], can also
be employed to achieve load balancing. For example, in [32] a distributed version
of particle swarm optimization is used to evaluate the load in the vicinity of a
node, and transfer tasks toward nodes with the highest fitness (i.e. nodes that
have the lowest load and can thus contribute to a better balancing of the grid).

Our research aims at employing concepts of self-organization to solve the prob-
lem of efficient scheduling and load balancing in distributed computing. Accord-
ingly, we propose a system based on bio-inspired agents wandering on a structured
P2P overlay. To minimize the network overhead our solution relies on simple in-
teractions between adjacent nodes and the structure of the P2P overlay, and does
not employ an agent-based resource discovery mechanisms. Furthermore we make
use of the the key-based routing capability of the underlying overlay to quickly
move agents toward nodes that provide the resources needed for the execution
of a job, and we exploit the overlay management protocol to organize and group
nodes according to their capabilities. In contrast to other bio-inspired approaches,
our solution efficiently supports both homogeneous and heterogeneous tasks and
resources.

3 ozmos Protocol

The ozmos algorithm tackles the problem of efficiently relocating tasks among
a large pool of distributed resources in a peer-to-peer overlay, achieving similar
load on each node. Our solution is fully distributed, and employs two bio-inspired
techniques, namely osmosis and ant-like mobile agents. Nodes manage a batch
scheduling queue and can execute one or more tasks concurrently according to
their performance characteristics. Each node can push some of its tasks to another
node if it detects that the latter is less loaded. For this, we assume that tasks
are independent, non-divisible, and non-preemptive: tasks cannot be relocated
while running, and each tasks is considered as the smallest computational unit
the execution which does not depend on any other unit. An important aspect
of our solution is support for both homogeneous and heterogeneous distributed
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computing: in a homogeneous scenario all tasks have the same requirements, and
each node is expected to be able to execute any task (although with different
performance characteristics). Conversely, in a heterogeneous grid each task has
different requirements (such as CPU architecture, operating system, libraries, etc.)
that can be provided only by a subset of the nodes. In the following of this section
we provide a detailed discussion of ozmos and its load balancing process.

3.1 Osmosis

Osmosis [27] is a natural phenomenon that occurs when two solutions at different
concentrations are separated by a semi-permeable membrane that allows only the
molecules of the solvent (for example, water) to pass through. In this situation
the solvent moves from the solution with the lowest solute concentration toward
the other: when the concentration on both sides of the membrane is equalized it
remains stable, although the solvent continues to flow in equal amounts across
the membrane. When the system is in an unbalanced state, the force required to
prevent the solvent from moving, the osmotic pressure, depends on the difference
between the concentrations in the two solutions (also called the osmotic gradient).
Figure 1 depicts an example of the process: the concentration of the solute on the
left side of the bin is initially at 83%, whereas on the right side it is at 25%. The
solvent molecules pass through the membrane separating the solutions, and both
sides of the bin finally reach an equal concentration of 50%. The process stabilizes
because the osmotic pressure generated by the increased amount of solvent on one
side of the membrane prevents further molecules from passing through. Osmosis
is advantageous for cellular life, as it enables water to move in and out of a cell
without requiring energy (passive transport). Our load balancing solution imitates
this mechanism by performing only local task exchanges (i.e. between neighboring
nodes) from nodes with higher loads, toward nodes with lower load. A benefit of
local interaction between nodes is a lower communication overhead, which allows
nodes to keep more up-to-date information about peers in their vicinity while
generating minimal traffic.

Fig. 1: Osmosis
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3.2 Chord

ozmos requires an underlying peer-to-peer overlay where nodes can exchange in-
formation about their status and mobile agents can migrate to relocate tasks. For
our purposes we chose Chord [42], which maintains a P2P overlay and imple-
ments a distributed hashtable (DHT). The overlay is structured as a ring, and
each node is assigned a unique identifier of b = 160 bits. Within the ring, nodes
are ordered according to their identifier (forming a circular identifiers’ space), and
maintain pointers to their successors and to their predecessor in the overlay. As a
distributed hashtable, Chord maps keys to values that can be stored on nodes of
the overlay. Each value is assigned a key in the same domain as nodes’ identifiers:
key-value pairs are published on the node whose identifier is the closest to key
of the data. To look up for a key a query message is forwarded in the overlay
until the corresponding node is found. To speed up the look up process, each node
maintains a finger table with shortcuts to other nodes at increasing distances in
the overlay. Chord enables very efficient information retrieval, with its ability to
route a query to destination in O(logN) hops in an overlay composed of N nodes.
Because the only requirements for the underlying P2P overlay are an ordered ring
topology and a routing mechanism, it is possible to replace Chord with Self-

Chord [22] in order to implement a complete resource discovery and scheduling
solution based on self-organized methodologies.

3.3 Local and remote concentrations

To replicate the osmosis process for load balancing it is necessary to define what
constitutes the solvent, respectively the solute, and the concentration of the so-
lution. In our scenario, the solute component are the computational resources on
each node, and its amount is a value inversely proportional to the computing
performance of a node. As with real osmosis, our solute cannot be transferred
across the network. Conversely, the solvent molecules are the tasks scheduled on
a node, which can be distributed among available resources so that each system
is equally loaded. Accordingly, we define the local concentration of a node as the
time required to process all tasks in its queue. This definition enables us to con-
sider a network of connected resources with different performance characteristics:
given the same amount of workload, the concentration value is higher on nodes
with lower performance. More precisely, the concentration cM on a node M is
computed according to the following formula:

cM =

∑

j∈T

jert

speedM × cpuM

where T is the set of all scheduled jobs, jert is the estimated running time of
task j in seconds (or remaining time for running jobs), speedM is the speed index
of the node and cpuM is the maximum number tasks that can be concurrently
executed. The speed index is a floating point value that expresses the performance
of the node compared to a baseline system, which has speedM = 1. This baseline
system is also used to determine jert (for example by means of a profiling tool such
as PACE [36]); generally we assume that a node with speedM = t will complete jobs
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t times faster than the baseline system. Furthermore we define the performance

index of a node M as perf M = speedM × cpuM , and its normalized concentration

as ċM = c× perf M .
Nodes periodically determine their load balancing actions by comparing the

local concentration with that of neighboring nodes in the network. Each node
receives information from its predecessor (p) and successor (s) on the ring, as
well as from a random remote node called probe (r). For each N ∈ {p, s, r}, we
assume that local values for ċN (initially set to ∞) and perf N (initialized as 1) are
available. The predecessor and successor concentration values provide information
about the load balancing state in the vicinity of the node, whereas the probe offers
an overview of distant areas of the overlay. Because the p and s links match the
underlying ring structure, they typically do not change during the life of the node.
On the contrary a new probe address is periodically received from a different peer
and the link is thus more volatile.

3.4 Resource identifiers

An important feature of ozmos is its support for both homogeneous and hetero-
geneous grids. In a homogeneous scenario, each node is assigned a random unique
identifier of m bits (typically m = 160) that matches the one used by Chord. To
deal with heterogeneous scenarios, we restrict ourselves to a finite number of classes
s ≥ 0 instead of dealing with arbitrarily heterogeneous resources. Resource classes
can be assigned according to the architecture of the machine, and its operating
systems: a task can request a specific resource class and thus set the requirements
for its execution. In order to determine the resource class of each node, its Chord

identifier is generated so that it contains both the class identifier as well as a ran-
domized key. More precisely, given s = 2k as the maximum number of classes, the
k highest-order bits of the Chord identifier are replaced by the value of the class
(Figure 2).

Fig. 2: Node identifier with class field

This mechanism allows each node to determine the class of known nodes (suc-
cessor, predecessor, and finger nodes), without explicitly querying them. Since the
value k ≪ m this modification does not affect the operation of the overlay manage-
ment protocol. On the contrary, since Chord maintains a global ordering of the
nodes according to their identifier, all peers belonging to the same class will con-
nect to adjacent positions in the ring. In this regard, ozmos can seamlessly support
heterogeneous grids, which can be viewed as a series of connected homogeneous
systems. For simplicity, tasks are similarly assigned unique identifiers whose prefix
also corresponds to a resource class: by doing so, the task identifier enables its
unambiguous tracking and implicitly declares the class of resources required for
its execution. In the present implementation of ozmos we have not considered the
case of overlapping classes. Nonetheless, minor adjustments to the algorithm can
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Fig. 3: Example of heterogeneous grid (performance indices omitted)

be introduced to allow load balancing between different but overlapping classes if
those map on adjacent regions in the ring.

3.5 Agents

To exchange information between nodes and to relocate tasks across the overlay
we employ ant-like mobile agents. Ants are software agents with strong and trans-
parent migration capabilities: agents can decide to move to another node, and have
their runtime state fully transferred to the specified location in the network, where
execution is resumed. These agents follow the paradigms of swarm intelligence [8]
and ant colonies [17]: the operation of the system is distributed across a large set
of ant-like agents that have only a limited local knowledge of the system. Each ant
behaves in an autonomous way, and its solving capabilities are limited to simple
tasks; nonetheless, the emerging collaborative behavior of the whole colony can
be used to solve complex goals without centralized control. Swarm systems are
typically also self-organizing, and can adapt to changes in the environment (for
example, the topology of the network). Furthermore the resulting system is gen-
erally more robust toward failures, and can tolerate the death of some individuals
of the colony.

ozmos employs three types of agents with different behaviors; while executing
on a node, each agent has access to the local concentration values, to the scheduling
queue, as well as to Chord data structures such as the address of the predecessor,
the successor list, and the finger table. It is important to note that we don’t
currently address security issues such as validation of incoming agents before their
execution. We are aware that solutions that can be deployed into real-world grids
must take care of the problem, and should not allow execution of arbitrary software
or processing of arbitrary data without strict control. A solution that can be
easily implemented is verifying the origin of agents and tasks and discard data
coming from untrusted sources. Because our main concern is load balancing, the
protocol does not currently support recovery from node or network failures, and
both queued and executing tasks are lost if a node fails. Finally, for the actual
job migration we assume that an underlying data transfer mechanism which takes
care of relocating both the task application as well as its data is available.

Notification Nodes periodically send a Notification agent to their predecessors,
successors, and to randomly chosen nodes. The task of Notification agents is to
inform both ring neighbors and a remote node about the local concentration and
performance characteristics. Whereas the predecessor and successor addresses are
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clearly defined by the structure of the overlay, the random node’s address has
to be drawn from the local finger table and the successors’ list. To support load
balancing in heterogeneous grids, agents are not sent to nodes whose resource class
is different from that of the origin node. Hence the value of remote concentrations of
incompatible nodes remains equal to its initial value of ∞. A suitable random node
of the same resource class can be retrieved from the finger table by checking its
identifier: if the node cannot retrieve another peer with an admissible identifier the
notification phase is simply skipped. As shown in Algorithm 1, the agent is given
a target node to migrate to (either p, s or the probe node r). The agent stores the
local normalized concentration and performance index values in its memory and
subsequently migrates to the target node, where the corresponding information
is updated. On the target node, if the source address corresponds neither to the
predecessor, nor to the successor, the probe information is updated. The activity
of Notification agents is twofold: on one hand it ensures that adjacent nodes on
the ring know the concentration of their respective neighbors; on the other hand it
provides each node with the address of a random peer (the probe) that represents
an additional direction for off-loading tasks to. Figure 3 depicts an example of
heterogeneous grid. Nodes X and Y belong to the same resource class 8, and thus
share their actual local concentration values. On the contrary, Y will not receive
updates from Z because their class is different, and the concentration value for its
successor will remain equal to ∞. Finally, node X has a valid probe address, and
has thus received the corresponding concentration value ċr, which can be used for
load balancing.

Algorithm 1 Notification Agent

Let: this, the source node;
Let: target, the target node (either p, s, or a random one);
Let: migrate(t), function to migrate to node t;
1: x := this

2: c := ċthis
3: v := perf this
4: migrate(target)
5: if x = s then

6: ċs := c

7: perf s := v

8: else

9: if x = p then

10: ċp := c

11: perf p := v

12: else

13: r := c

14: ċr := c

15: perf r := v

16: end if

17: end if

Osmosis Osmosis agents are used to relocate tasks from a node with high con-
centration toward a node with low concentration. Each node M periodically de-
termines the osmotic gradient toward other nodes, by computing the difference
between the local concentration and that of each node n ∈ {p, s, r}, namely
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cM − ċ
n

perf
n

. Because nodes can only decide to offload some of their tasks and

cannot request them, only the node x corresponding to the highest positive dif-
ference is chosen as candidate for the load balancing process. In order to equalize
local concentrations on both scheduling queues, the node tries to reschedule some
of the local jobs on the remote node. However, because each task represents a dis-
crete indivisible entity, precise load balancing might not be possible. Furthermore,
the load balancing operation must consider the performance of both nodes. As
a consequence, a node first computes the total estimated run time that must be
transferred to x as follows:

Tert→x =
(ċM × perf M )− (ċx × perf x)

perf M + perf x

A set of tasks J such that
∑

j∈J jert ≈ Tert→x is selected within the local
scheduling queue, starting with those with the shortest estimated run time. tasks
in set J are migrated toward node x with the following probability:

PJ→x = min(1, 1− (

∑
j∈J jert − Tert→x

ǫ× Tert→x
))

where ǫ is a user-defined threshold. This threshold is necessary because the sum
of task run times can only approximate the requested value. The migration process
is carried out by Osmosis agents, whose behavior is detailed in Algorithm 2. Agents
are given a list of task descriptors and a direction to follow in the ring. When an
agent arrives on its target node the local concentration is evaluated: if this value is
lower than that of the succeeding one (according to the actual traveling direction),
the tasks carried by the agent are released and locally scheduled. On the contrary,
the agent can migrate for a number of steps further in the ring. This behavior
ensures that tasks are released on the least loaded node found, hence improving
the load balancing result. In a heterogeneous system forwarding terminates when
the successor of the current node belongs to a different resource class, because
the reported concentration would be infinite. If the target is the probe node, the
traveling direction on the ring is determined by following the lowest concentration
after the initial migration. The operation of the Osmosis agent can be viewed
as the behavior of an ant following a pheromone trail, with lower concentrations
being preferably chosen.

Relocation In a heterogeneous grid, tasks might be submitted to a node whose
class is different and the resources do not permit execution. Accordingly, a reloca-
tion mechanism is required to reschedule incompatible tasks on nodes of the appro-
priate class. The Relocation agent detailed in Algorithm 3 is generated by nodes
in order to dispose of incompatible jobs by migrating them into another schedul-
ing queue. In contrast to the Osmosis agent, the Relocation one does not use the
predecessor and successor links to move on the overlay, but employs Chord’s key
based routing to directly jump to a node whose class is compatible with the tasks
being relocated.
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Algorithm 2 Osmosis Agent

Input: J , set of tasks to be migrated;
Input: dir, direction of movement (either → p, → s, → r);
Input: steps, maximum number of allowed hops in the ring;
Let: migrate(t), function to migrate to node t;
Let: this, the current node;
Let: next(d), the following node in the d direction;
Let: schedule(t), schedules task t on the current node;

1: migrate(next(dir))
2: if dir =→ r then

3: if
ċnext(→p)

perf next(→p)
>

ċnext(→s)

perf next(→s)
then

4: dir :=→ p

5: else

6: dir :=→ p

7: end if

8: end if

9: while steps > 0 do

10: steps := steps− 1

11: if cthis ≥
ċnext(dir)

perf next(dir)
then

12: migrate(next(dir))
13: else

14: break

15: end if

16: end while

17: for all task ∈ J do

18: schedule(task)
19: end for

Algorithm 3 Relocation Agent

Input: R, list of tasks to be relocated;
Input: tclass, resources’ class of the tasks to be relocated;
Let: this, the current node;
Let: route(c), migrate to the first node in class c with Chord key based routing;
Let: class(t), return the resources’ class of task t;
Let: schedule(t), schedule a task t on the current node;

1: route(tclass)
2: for all task ∈ tasks do

3: schedule(task)
4: end for

4 Evaluation

Through a series of experiments in both homogeneous and heterogeneous scenarios,
we aim at validating the load balancing performance of ozmos as well as its com-
munication efficiency. In particular, to determine if the load is well balanced across
the grid we measure the relative standard deviation of the load across all nodes.
This measure considers both the total expected running time of each scheduling
queue as well as the performance of each node. Furthermore we consider the traffic
generated by the agents created by the algorithm. Because we employ simulated
workloads, the transfer of the actual data tied with each job is not considered in
our analysis. All experiments are conducted using the OverSwarm [9] platform,
based on OverSim [6] and the OMNET++ [43] discrete event simulator, which
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reproduces latency and takes into account the delays and queuing effects of an
underlay network. This section presents and discusses the details of the considered
evaluation scenarios.

General setup In order to obtain statistically valid data, each experiment con-
sists of 5 simulation runs using the same parameters, with each run covering about
5 hours and 30 minutes of activity. Unless otherwise stated, each simulation is con-
ducted using an overlay of 2048 nodes, managed by the Chord protocol. At the
beginning of each experiment, nodes join the overlay with an average frequency of
1 node every second. The duration of this initialization phase thus varies depend-
ing on the final size of the overlay (from 1024 seconds to 4096 seconds). One of
the nodes receives all the work load, namely a set of 10000 to 100000 tasks. The
main parameters of the algorithm are kept constant throughout all experiments:
the osmosis threshold ǫ is set to 1.05, which means that a node not may not of-
fload more than 105% of the required amount while load balancing. To inform
neighbors about the local concentration level, every 30 seconds every node deploys
its Notification agents. Local and remote concentrations are compared every 60
seconds, eventually triggering the creation of Osmosis agents to perform load bal-
ancing. Each Osmosis agent can travel at most 10 hops in the overlay following a
path toward a lower concentration: after 10 hops, carried tasks are released and
scheduled on the current node. In heterogeneous scenarios incompatible tasks, if
present in the scheduling queue, are relocated to the appropriate node every 120
seconds, with only one class of incompatible jobs relocated at a time. All com-
munication between nodes is performed asynchronously and assuming a reliable
network, where neither communication nor node failures occur.

Homogeneous scenarios In homogeneous scenarios all nodes are grouped into
a single resource class, and can execute the same tasks although with different
performances. At the start of each experiment, one node is given all the 50000
tasks, with a run time jert chosen uniformly at random in the continuous interval
between 15 and 45 minutes. Computing power of each node is randomly assigned:
for each node, cpuM is uniformly chosen on the discrete interval [1, 4], whereas
speedM varies on a continuous interval between 1 and 2. To determine the scala-
bility of our solution, experiments with varying overlay sizes and task count are
also conducted: more specifically, we consider additional simulations with 1024
and 4096 nodes, as well as with 10000 and 100000 submitted tasks.

Heterogeneous scenarios In heterogeneous scenarios both nodes and tasks are
attributed a random resource profile out of the 64 available classes. Computing
power of each node is randomly assigned as in homogeneous scenarios, and at
the start of each simulation 50000 jobs are submitted to a random node. On
each node, we distinguish between compatible and incompatible jobs: the former
require a set of resources of the same class as the current node, whereas the
latter require a different class and need to be rescheduled on appropriate nodes
by means of Relocation agents. As in homogeneous scenarios, we evaluate the
scalability of the algorithm by performing tests with overlays of different sizes
(1024, 2048 and 4096 peers) and with a varying number of tasks (10000, 50000,
and 100000). Additional network scalability experiments where the proportion
between the number of nodes and the number of classes is kept constant are also
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considered, namely by defining 32 classes in networks of 1024 nodes, and 128
classes with 4096 nodes. Finally, we conduct experiments with 2048 nodes and a
different number of classes (32 and 128). In all heterogeneous scenarios the number
k of high-order bits of the node’s identifier used for storing the resource class is
computed as k = log2(number of classes).

Scenarios without probe nodes To determine the importance of probe nodes in
the load balancing process we perform a series of experiments, both in homoge-
neous and heterogeneous conditions, without these additional links.

Comparison with a Messor-like algorithm In order to better understand how
ozmos compares to another fully distributed load balancing solution, experiments
with a protocol inspired by Messor [34] are also performed. Nodes periodically
deploy ant-like agents to discover overloaded or underloaded nodes and to obtain
an overview of the status of the network. An agent can behave in two different
ways: search max and search min. While in the search max state, the agent wanders
in the network looking for nodes with excessive load (i.e. greater than the average
load observed in the grid): the address and load of each visited node are stored
in a list carried by the agent. When an overloaded node is found the ant-like
agent might decide to switch to the search min and look for underloaded node
(i.e. with a load lower than the average): while in this state, the ant wanders
until it finds a suitable node. Subsequently the ant requests a job transfer from
the overloaded node to the underloaded one, and switches back to the search

max behavior. On each visited node, agents store information about the load of
previously seen peers to allow nodes determine the average load on the grid and
to help subsequent ants find better paths in the overlay. On each node, an agent
is instanced every 480 seconds, and can travel up to 100 steps in the overlay.
The behavior of each agent is determined by parameters and thresholds: in our
simulations we defined these values according to [34] and an implementation of the
protocol available in [33]. The exploration probability is set to 0.2 while looking
for underloaded nodes (search min state) and 0.95 while searching for overloaded
nodes (search max state). At each step, if the current node satisfies the criteria of
the current state, an agent has a probability of 0.2 of continuing with its wandering
instead of switching its state. The switch between the two states is determined by
random probability of 50%, and can occur if the relative difference between the
most loaded node and the least loaded node is less than 0.01. An agent can carry
information about at most the last 16 visited nodes. Similarly, the maximum size
of the local view stored on each node is also 16 entries: when there’s no space left,
a least-recently-updated strategy is used to remove the oldest entries.

Measurements Measurements of the load balancing process start after the ini-
tialization phase; accordingly the reported results appear shifted on the time axis
depending on the size of the overlay. In particular, in overlays of 1024 nodes the
load balancing process and our measurements start after about 1024 seconds,
whereas with 2048 and 4096 nodes load balancing and measurements begin af-
ter 2048 and 4096 seconds respectively. The load balancing performance of the
algorithm is determined by the relative standard deviation (RSD) of the concen-
tration. In homogeneous scenarios this value is computed over all nodes, whereas
in heterogeneous scenarios separate data is computed for each resource class and
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the average RSD over all classes is considered. Regarding the stability of the al-
gorithm, the average number of tasks that are rescheduled in the previous 300
seconds is examined: this measurement is reported as a percentage of the overall
number of tasks, and can exceed 100% if the same tasks are rescheduled multiple
times during the considered period. To determine the scalability of the algorithm
we compare the results obtained both in overlays of different sizes, as well with
different workloads.

5 Results

In this section we report and analyze the results of the previously presented sim-
ulation scenarios. We first describe the experimental results concerning the load
balancing capabilities of the algorithm; subsequently, we focus on the scalability
of the algorithm in relation to the size of the network. Next, our discussion con-
centrates on to the stability of the load balancing process and its convergence
toward a state of equilibrium. Subsequent experiments determine the response of
the system to different loads (number of scheduled tasks) and the importance of
probe links, as well as the influence of the number of classes in heterogeneous
scenarios. Finally, we compare the results obtained with ozmos with those of the
Messor-like algorithm. Each evaluation scenario is labeled with a letter, accord-
ing to Table 1. For each scenario of experiments we also present data concerning
the generated traffic (average over 5 runs, as well as standard deviation), in order
to give an insight of the overall efficiency of our approach.

Load balancing performance and scalability The first set of results concerns
the load balancing performance of ozmos on both homogeneous and heterogeneous
grids when dealing with 50000 tasks. We consider three overlays of different sizes:
1024 (scenario A), 2048 (B), and 4096 (C) nodes. As shown in Figure 4, in homo-
geneous scenarios our algorithm is able to quickly balance the load across nodes
after the start of the process. Unsurprisingly, by comparing the results obtained
with 1024 and with 4096 nodes it is possible to observe a slight decrease of the
the convergence rate as the network grows bigger. On the contrary, heterogeneous
scenarios (Figure 5, scenarios D, E, and F) exhibit a greater difference between the
different scales. This result is due to the different number of nodes belonging to
each of the 64 classes: from an average of 16 nodes per class in an overlay of 1024
nodes, up to 64 in overlays of 4096 nodes. It is interesting to notice how the stan-
dard deviation in homogeneous overlays is sensibly lower than in heterogeneous
ones, meaning that a lower number of tasks negatively affects the load balancing
performance. Although not shown in the graph, all incompatible tasks are quickly
relocated to suitable nodes in the early stages of the simulation.
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#Nodes #Tasks Resources #Classes Bytes/s
per
node

StDev
(5
runs)

Ozmos

A 1024 50k Homogeneous - 115.2 0.22
B 2048 50k Homogeneous - 124.13 0.18
C 4096 50k Homogeneous - 134.22 0.12
D 1024 50k Heterogeneous 64 107.89 0.30
E 2048 50k Heterogeneous 64 118.84 0.126
F 4096 50k Heterogeneous 64 129.24 0.06
G 2048 10k Homogeneous - 122.83 0.13
H 2048 100k Homogeneous - 125.42 0.14
I 2048 10k Heterogeneous 64 117.28 0.05
J 2048 100k Heterogeneous 64 120.29 0.05
K 2048 50k Homogeneous.w/o probe - 117.04 0.21
L 2048 50k Heterogeneous.w/o probe 64 114.95 0.10
M 2048 50k Heterogeneous 32 120.20 0.09
N 2048 50k Heterogeneous 128 116.99 0.09
O 1024 50k Heterogeneous 32 110.50 0.04
P 4096 50k Heterogeneous 128 128.52 0.09

Messor

Q 1024 50k Homogeneous - 1187.05 2.42
R 2048 50k Homogeneous - 1082.28 3.25
S 4096 50k Homogeneous - 739.16 75.55
T 2048 10k Homogeneous - 1077.53 4.72
U 2048 100k Homogeneous - 1080.84 2.35

Table 1: Evaluation scenarios and generated network traffic (including Chord

protocol)

Fig. 4: Load balancing, homogeneous re-
sources, different overlay size

Fig. 5: Load balancing, 64 heterogeneous re-
sources classes, different overlay size

Stability The stability of the load balancing process is determined by the number
of tasks rescheduled by the algorithm over a period of time. As the load of each
node equalizes, the number of tasks migrated by the algorithm should reduce.
In contrast to real osmosis, where solvent molecules continue to flow even after
equal concentrations are obtained, in a distributed environment we aim at limiting
bandwidth consumption by preventing tasks from being migrated if that does not
further improve the load balancing state of the system. Unfortunately, because
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no global knowledge is available, small errors can still trigger minor rescheduling
activities.

Fig. 6: Stability, homogeneous resources, dif-
ferent overlay size)

Fig. 7: Stability, 64 heterogeneous resources
classes, different overlay size

As shown in Figures 6 and 7 most of the load balancing activity takes place as
soon as the process starts. The number of rescheduled tasks quickly decreases and
only very few tasks are subsequently migrated. These results demonstrate that the
load balancing process converges toward a stable state.

Scalability (tasks) Another important evaluation concerns the balancing perfor-
mance with varying load. Hence, we consider three scenarios with an increasing
number of tasks (10000, 50000 and 50000) scheduled on a network of 2048 nodes.
Figure 8 shows the results in a homogeneous system, whereas Figure 9 reports
data concerning a heterogeneous grid. Surprisingly, in both homogeneous and het-
erogeneous scenarios a lower number of tasks negatively affects the load balancing
process. The reason for this behavior is that a smaller number of tasks translates
into fewer possible combinations for optimal scheduling on the grid. In contrast,
with a sufficient number of tasks and thus a greater variety of run time lengths,
an optimal solution can be easier to obtain.

Fig. 8: Load balancing, homogeneous re-
sources, different number of tasks

Fig. 9: Load balancing, 64 heterogeneous re-
sources classes, different number of tasks
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Stability (tasks) With scenarios G, B, and H (Figure 10) and I, E, J (Figure 11)
we determine the stability of the algorithm in homogeneous and heterogeneous
situations respectively. All experiments are conducted in overlays of 2048 nodes.
In simulations with heterogeneous resources tasks are randomly assigned one of
the 64 possible classes. No significant difference can be observed in the results, re-
flecting the ability of the algorithm to support increasing amount of tasks without
producing unstable behaviors.

Fig. 10: Stability, homogeneous resources, dif-
ferent number of tasks

Fig. 11: Stability, 64 heterogeneous resources
classes, different number of tasks

Fig. 12: Load balancing, overlay of 2048 nodes,
with and without probe

Fig. 13: Stability, overlay of 2048 nodes, with
and without probe

Importance of the probe As discussed in Section 3 an important activity car-
ried out by Notification agents is informing a random node beside predecessors and
successors on the ring about the current load. The nodes from which the agent
originates are considered as probes by the receiving peers. Because information
about probes provide an insight of the load balancing status in remote part of
the overlay, better and faster rescheduling decisions can be made. In particular,
probe links prevent situations where the grid is in a globally unbalanced state
because the difference between the concentration of adjacent nodes on the ring is
too small to trigger a load balancing response. Figures 12 and 13 show the results
obtained with and without probe nodes, concerning the load balancing perfor-
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mance and the stability of the algorithm respectively. In homogeneous scenarios
the lack of probe nodes considerably worsen the effectiveness of the load balancing
process, with a standard deviation of the concentration that remains higher than
300%. On the contrary, in the considered heterogeneous system (where the 2048
nodes are divided into 64 classes) the absence of probe nodes does not influence
the effectiveness of the algorithm, because the number of nodes in each class is
very small. However, in larger scale system probe links would be required even in
heterogeneous scenarios to ensure satisfying performance.

Varying the number of nodes-per-class As shown in the previously presented
experiments, results obtained in heterogeneous scenarios depend on the number
of nodes in each resource class. In order to understand how this number affects
the performance of ozmos, we analyze the data gathered through simulations with
different nodes-per-class proportions. In this regard we first evaluate heterogeneous
systems with different sizes (1024, 2048, and 4096) and a correspondingly different
number of classes (32, 64, and 128 respectively) that maintain a constant 32 nodes-
per-class proportion; second, we considered a system with 2048 nodes and a varying
number of resource classes, namely 32, 64, and 128.

Fig. 14: Load balancing, heterogeneous over-
lays, same nodes-classes ratio

Fig. 15: Stability, heterogeneous overlays,
same nodes-classes ratio

Figures 14 and 15 illustrate the behavior with a constant ratio. The convergence
of the standard deviation of the concentration is similar at all scales, but reaches
different lower bounds. In general, the standard deviation seems to worsen as
the number of nodes and number of classes proportionally increases. To better
understand the relation between the number of tasks, the number of nodes, and
the number of classes, additional experiments are necessary. In this regard, Figures
16 and 17 report the results obtained through simulations on an overlay of constant
size (2048 nodes), where the number of classes varies from 32 to 128.

Surprisingly, in these experiments a higher number of classes (128) provides
the best results, even though each class is only represented by 16 nodes. This
phenomenon clashes with our previous hypothesis, and can only be traced back
to a strong dependency between the three aforementioned factors. By keeping the
number of tasks constant, an increase in the number of classes reduces the total
amount of jobs in each class and worsens the performance of the load balanc-
ing algorithm, as shown by previous experiments. However, a higher number of
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classes also reduces the number of nodes belonging to each class, meaning that
the load balancing process operates on a smaller system and can thus be more
effective. Hence the number of classes to be used in the system should be carefully
determined and should take into account the projected scale of the network.

Fig. 16: Load balancing, 2048 nodes heteroge-
neous overlays, different nodes-classes ratio

Fig. 17: Stability, 2048 nodes heterogeneous
overlays, different nodes-classes ratio

Scalability comparison against Messor The last set of results concerns a com-
parison between ozmos and a Messor-like algorithm. Results obtained with the
latter are important because they provide a baseline to understand the advan-
tages and drawbacks of our approach. This is a key factor, since both solutions
are based on fully distributed bio-inspired solutions and aim for the same goals of
self-organization and adaptivity. All experiments conducted with Messor are run
on homogeneous grids: all nodes are able to execute all tasks, but with different
performance characteristics (i.e. processing power and number of parallel tasks).

Fig. 18: Messor, load balancing Fig. 19: Messor, stability

Figures 18 and 19 illustrate the convergence of the load balancing and the
stability of the process respectively. It is clear that Messor is able to balance the
whole system very quickly, and in contrast to ozmos it does not exhibit noticeable
variations when the size of the overlay is increased. By employing several agents
that wander on the network collecting information about the load of each visited
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node, Messor nodes can discover even distant regions of the network. The sta-
bility of the system after a balanced state has been reached is also highlighted in
Figures 20 and 21: even with a large number of tasks the algorithm stops most
of the rescheduling activities after 1900 seconds, with a relative standard devia-
tion of the concentration leveling off at 50%. At this point, dismissing the fact
that Messor does not support heterogeneous networks, a comparison between
this algorithm and ozmos seems to favor the former. To get a clearer picture, in
the following section network another element of comparison will be taken into
account: communication efficiency.

Fig. 20: Messor, load balancing Fig. 21: Messor, stability

Network overhead To measure the bandwidth consumed by the algorithms in
each scenario we measured the average amount of data sent by each node per sec-
ond. Beside signaling messages originating both from the overlay management and
the load balancing application, we evaluate the cost of transferring tasks between
nodes. For this only the size of task descriptors is considered: each descriptor con-
tains a unique identifier for the job, as well as a list of required resources. As shown
in Table 1, both in homogeneous and in heterogeneous grids the overall bandwidth
consumed by the algorithm remains minimal. Figure 22 illustrates the distribution
of the traffic between Chord and the load balancing application. Heterogeneous
scenarios require additional bandwidth due to the use of key-based routing to
reschedule incompatible tasks. Increasing either the network size or the number
of tasks has minimal impact on the traffic generated by each node, which proves
that our approach is indeed scalable.

The traffic generated by ozmos is about ten times lower than withMessor: our
solution is thus able to operate more efficiently while retaining satisfactory perfor-
mance. The traffic generated by Messor is required to keep up-to-date information
about the average load in the grid in order to respond to changes. Unexpectedly,
with Messor an increase in the size of the grid has a noticeable benefit on the
overall bandwidth consumption. This phenomenon is linked to the fact that with
less nodes the load balancing requires more time and more rescheduling operations
to reach stability. Moreover, because the number of available resources is lower,
each agent must wander for a higher number of steps in order to find suitable
nodes.
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Fig. 22: Distribution of traffic between overlay management and load balancing
application

6 Conclusions

This paper proposed a fully distributed algorithm for dynamic load balancing in
homogeneous and heterogeneous computing systems such as desktop grids. Our
solution is completely decentralized, and is based on P2P interaction between each
computational node. The load balancing mechanism, called ozmos, is inspired by
osmosis, a physical process upon which many fundamental biological phenomenons
are based. The proposed algorithm relocates tasks among adjacent nodes that
are connected by means of a Chord peer-to-peer overlay; ant-like mobile agents
are used to share information about the status of the system and to balance
loads between the available resources to improve the efficiency of the entire grid.
The proposed mechanism easily supports grids with heterogeneous resources, by
exploiting the overlay management algorithm and group resources with similar
profiles together. The key based routing capability of Chord is used to discover
other nodes in the overlay, and to support relocation of incompatible tasks toward
nodes with suitable resources. By means of several experimental scenarios, with
both homogeneous and heterogeneous resources, the load balancing effectiveness of
our approach has been verified. Furthermore, simulations with overlays of varying
sizes as well as with different workloads proved that our solution is scalable. Finally,
a comparison with another fully distributed approach demonstrated that ozmos

can achieve satisfying results while consuming considerably less bandwidth. Future
work will focus on a more complete definition of concentration values, for example
to take into account the cost of job transfer. Moreover, the introduction of a
locality-aware [44] overlay structure will also be investigated.
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