
Open Source in Higher Education: Case Study

Computer Science at the University of Fribourg

Amos Brocco and Fulvio Frapolli

February 14, 2011

Contents

1 Introduction 3
1.1 About this document . 3
1.2 Open source . 3
1.3 Open source and education . 4

2 An open information society 5
2.1 What is open? . 5
2.2 Copyright versus Ownership . 6
2.3 Copyright and Licenses . 7
2.4 Abusing openness . 8

3 Benefits of Openness 9
3.1 Success factors . 10

4 Open? in Education 13
4.1 Open Knowledge and Content . 14
4.2 Open Tools and Applications . 15

4.2.1 Free or Open? . 15
4.2.2 Against software piracy 15
4.2.3 Development tools . 16
4.2.4 Operating systems . 16
4.2.5 Document editors . 17
4.2.6 Graphic editors . 17
4.2.7 Web tools . 18
4.2.8 Scientific Tools . 19

4.3 Open Formats . 20
4.3.1 XML . 20
4.3.2 Document formats . 20
4.3.3 Graphic formats . 21
4.3.4 Media formats . 21

4.4 Open Web Content Managers . 21
4.4.1 MOODLE . 22
4.4.2 Claroline . 23
4.4.3 Wikis . 23

4.5 Open tools for open content for an open education 23

1

5 Open source in Computer Science classes 24
5.1 Teacher perspective . 24
5.2 Student perspective . 25
5.3 Case Study: Operating System Project 25

5.3.1 Previous years . 26
5.3.2 The class . 26
5.3.3 Project’s overview . 26
5.3.4 Didactic aspects . 27
5.3.5 Evaluation . 28
5.3.6 Schedule . 29
5.3.7 Resources . 29
5.3.8 Summary of the experience 30

5.4 Closing remarks . 32

6 Conclusion 33

2

Chapter 1

Introduction

Firefox, Openoffice, GIMP, etc. these are the names of just few of the open
source software tools that are currently used by millions of people around the
world. While most of the users neglect or ignore the fact that these tools are
open, these applications surely owe part of their success to the fact that people
have been able to freely work, adapt, and improve them thanks to the open
source distribution philosophy. In this paper we want to highlight the benefits
of open solutions in education and promote the active use of open source software
in computer science classes.

1.1 About this document

This work is the product of a team work between Amos Brocco and Fulvio
Frapolli as the result of the tight collaboration during these last years at both
the scientific research and teaching levels. Being consumers of both open source
software and content in our private life we tried to promote open source solutions
also during the computer science classes that we were responsible for. We exhibit
here thus a single document which has been organized so that an equal amount
of work has been provided by each author.

1.2 Open source

Computers are very complex machines that can understand only a very simple
code, namely the binary code (zeroes and ones). Developers don’t write applica-
tions using binary code, but instead rely on higher level programming languages
which are, compared to machine code, human readable. The instructions given
to the computer in a program determine what the processor and other devices
will do. A special tool, called compiler, translates these instructions into bi-
nary machine code, so that the application can be understood and executed by
the computer. The ensemble of all the files that contain those instruction is
called the source code of an application. When an application is released ac-
cording to the proprietary closed source model, only the binary representation
is distributed, not the source code. This means that for a human it is almost
impossible to understand what the application really does, or to modify the

3

application to better fit his or her needs. Moreover, the copyright terms forbid
to redistribute the application to other people (either as-is or modified).

The term open source is referred to the source code of a computer program.
In open source applications the source code is distributed along with the ap-
plication (or is available to the end-user), meaning that anyone can study its
contents and modify it. Moreover, the programmer gives explicit permission
to redistribute copies of the application, provided that some rules are obeyed.
Open source software is thus very different compared to proprietary solutions:
whereas the former promote transparency and sharing, the latter are typically
obscure and protected.

1.3 Open source and education

The goal of open source solutions in the context of education, and in particular in
computer science, is twofold: on one hand to provide the student with, generally
free, tools for crating, modifying and exchanging information; on the other
hand, and for what concerns computer science education, to allow the teacher
to explain the fundamentals of computer science in a real world scenario. From
a more general point of view, opening up education increases the availability of
learning material, so that both teachers and students can (quoting Newton)

see further (. . .) by standing on the shoulders of giants

.
In this paper we give an insight on the use of open source solutions and of

open knowledge in education. In order to achieve our goal, several concerns are
to be treated. Accordingly this document is divided in three parts. In the first
part, a definition of the main open source concepts is provided. Furthermore,
a survey of existing open source solutions in the context of higher education
is presented. In the second part the benefits of openness are discussed, and
the different beneficial factors are presented. Finally, open tools and solutions,
deployment opportunities for educational purposes, and a case study concerning
the use of open source in a computer science class at the University of Fribourg
is the topic of the third part. More specifically, we describe how open source
has been employed in our department and draw some conclusions on its benefits
and drawbacks from our personal experience.

4

Chapter 2

An open information
society

In recent years, we witnessed an explosion in the amount of content produced,
distributed and shared by individuals, in different formats, such as texts, music
or videos. Spurred by the birth of content-sharing and social-networking web-
sites, previous technical limitations that could have hindered casual users from
distributing their productions have ceased to exist. In this context, open access
policies aim at easing the legal provisions that may prevent free distribution and
fruition of information. Because scientific research and the evolution of common
knowledge depend on sharing results and findings amongst people, leveraging
openness at all levels of content production and distribution brings enormous
benefits to the community.

2.1 What is open?

Before digging into the different categories of open content, a precise definition
of what should be considered as open is necessary. As pointed out in [22],
the success of open solutions depends on several factors, one of them being a
common agreement on the definition of openness. It is important to differentiate
between various terms that are often misunderstood or abused when referring to
content that can be easily found on the web. Because content can be understood
as open at different degrees, to fully consider the implications of openness we
first report the definition given in [20], namely

A piece of knowledge is open if you are free to use, reuse, and re-
distribute it subject only, at most, to the requirement to attribute
and share-alike.

A common fallacy in understanding this definition concerns the meaning of
free, which does not refer to the price or cost but rather, as pointed out in [30],
to freedom; to quote Richard Stallman, Think free as in free speech, not free
beer. In this regard, open content could be made available for a fee, although
this is rarely the case. On the contrary, freedom of reuse and redistribute cannot
involve any fee or royalty: put it simply, if Alice obtains some open content from
Bob, and redistributes it to Tom, Bob cannot exercise any royalty right.

5

Another take on the definition of openness is offered by the Open Source
Definition [21], which refers to computer software and cites different criteria
such as: free redistribution, source code availability, right to modify and produce
derived works, etc.

Although the freedom given to open content offers a wider range of oppor-
tunities, licenses have been created to precisely define the rights given to the
end-users. Creators of open content retain full rights over their productions,
and copyright is preserved. Hence, redistribution licences are not meant as an
alternative to copyright, but aim at giving additional permissions and rights to
everyone within the distribution chain, up to end-users.

In respect to the previous definitions, a large number of works cannot be
clearly classified as open. In particular, some of the information found on the
Internet or commercial software, even though it can be freely accessed or used
is not open following the aforementioned definitions. Notable examples include
popular newspaper websites, that provide freely accessible content but do not
grant any right to reproduce or reuse it, and freeware software such as Skype or
the Opera web browser. It is noteworthy to mention that specific redistribution
schemes might be still agreed upon to obtain the right to reproduce content
(typically by paying a redistribution license), but opposed to open content,
such grant is normally not transferable and does not extend to end-users.

2.2 Copyright versus Ownership

An important clarification should be made concerning the purpose of copyright
and the concept of ownership. Ownership typically pertains to physical goods
(for example, books or audio tapes), but also to abstract ones such as royalty
rights to novels and songs. Because abstract goods usually require a physical
distribution medium, copyright laws have been created to draw a line between
physical ownership of this medium and that of the content. More specifically,
while a person can acquire the ownership of a music compact disc, the rights
and ownership of its contents (i.e. the songs) remain to the composer. As there
is practically no law limiting physical ownership, the focus of openness must be
put on content distribution and copyright laws. While current laws do a very
good job at protecting authors’ rights, they impose serious limitations to the
end-user. In particular they prevent any redistribution of the content.

Ownership of intangible content is traditionally referred to as intellectual
property (IP), and groups several concerns such as copyright, trademarking,
patents, etc. There exists an organization that is devoted to the protection
of such property (the World Intellectual Property Organization (WIPO) estab-
lished in 1967), that advertises IP as a financial incentive fostering research and
development. While protection of ideas could really push economic growth in
certain areas (such as industrial processes), there is a common criticism ([7, 27])
arguing that in recent times and in several areas (such as computer software) the
opposite happens, with excessive protection limiting innovation. Accordingly,
a review of what is really to be protected is necessary, but pressure from large
companies hinders this process.

6

2.3 Copyright and Licenses

Openness aims at increasing the distribution and redistribution rights given by
the authors, not by replacing copyright, but by leveraging existing copyright
laws. As content authors retain full ownership of their product, distribution
licenses can be legally enforced to either broaden the end-user distribution rights,
or even restrict them.

Several licenses exists to govern the distribution of content ranging from
computer software to artistic productions. One of the first, and most known
open licenses is the General Public License (GPL) [11], proposed by Richard
Stallman in 1984 to regulate the distribution of a free operating system called
GNU [9]. The GPL is also an example of copyleft license, which groups all distri-
bution licenses that give the right to distribute modified or unmodified versions
of a work provided that the same rights are preserved. Accordingly, the GPL is
referred to as a non-permissive license. On the contrary, permissive licenses al-
low for narrower redistribution terms on derivative work, and examples include
the BSD [24] or the MIT [19] licenses: the recipient of software distributed
under such licenses can choose to incorporate it within non-free or proprietary
software. Figure 2.1 illustrates the differences between several licenses used for
the distribution of open source software.

Figure 2.1: Comparison of some free and open source software (FOSS) licenses
(original from [5])

Whereas most open licenses have been created for use with computer soft-
ware, a number of generic licenses have recently started to appear (GNU FDL
[10], Open Audio License [8], etc.). In contrast to software licenses, free content
ones concern a wider range of use cases, such as the distribution of documenta-
tion, pictures, audio, or movies. In this regard, the most famous licensing terms
are the ones known as Creative Commons (CC) [16].

7

Finally, works can also get rid of copyright by being released as Public
Domain. In this case, the author explicitly gives up its rights on it, so that the
content can be freely used, modified, and distributed.

Free content and software licenses depend on the willingness of the recipients
to comply with the redistribution terms, and rely on the copyright law to protect
the authors rights. Accordingly, because licensing terms are often ignored once
the content has been obtained or are difficult to fully understand, abuses can
arise.

2.4 Abusing openness

The downside of making works available under an open license is the risk of
unfair exploitation of the whole content or just part of it. Notable cases from
computer software include the use of open source code within proprietary prod-
ucts or the failure to fully comply with the licensing terms, for example by not
making the source code available as soon as the product is released [12]. In
education, the risk of openness concerns plagiarism: students may be tempted
to borrow free content and claim ownership over it. This issue also exists with
non-free content, but the free nature and availability of open content is often
deceiving. Because open content usually relies on the collaborative work of an
engaged community, abuses can lead to negative effects on the motivation of
each participant to contribute to a project. Fortunately, copyright and licenses
provide an appropriate protection against such abuses. Several entities closely
monitor (either by hand or in an automated way [25]) the produced content,
and violators are typically discovered and punished.

8

Chapter 3

Benefits of Openness

Opening up content brings a number of advantages and freedom to end-users;
unfortunately, a number of business companies are more geared towards limiting
what the user can do up to the point of introducing artificial limitations such
as Digital Right Management (DRM). In this paper we will not deal with such
cases, but concentrate on a full understanding of the benefits of open solutions.
Accordingly, a review of the typical communication flow of content/information
between a producer and a consumer can help in understanding the differences
between a proprietary and a non-proprietary situation.

Figure 3.1 depicts the typical flow between producers and consumers in the
proprietary world: the information is created by some entity, represented ac-
cording to some format known to both the sender and the receiver, and then
transmitted to the end-user. The content is closed, and the end-user cannot
transfer a derivative work to another consumer.

Figure 3.1: Proprietary software distribution (Example)

Figure 3.2 illustrates a typical communication in an open (non-proprietary)
situation: the end-user is not only the receiver of the information, but can
become an active aggregator of multiple sources and finally the producer (pro-
sumer, as producer and consumer) of some derivative work that can be trans-
ferred to other users. This model results in a number of benefits [3], such as
a more agile development that evolves more rapidly and quickly adapts to new
environmental conditions and needs, and higher quality standards: as soon as a
new feature has been added or a problem has been fixed, the whole community
can take advantage.

9

Figure 3.2: Open-source software distribution (Example)

The previous example raises a number of issues related to open content. In
particular, an important component is needed to support the open transfer of
information, namely the representation format. If the sender and the receiver
of the information do not agree on a common communication language, com-
munication itself cannot take place. In this regard, and in the light of digital
information, enabling open communication relies on open formats and possibly
open applications. In the next chapter examples of open formats and tools will
be provided.

3.1 Success factors

There are many factors that are to be accounted for the success of the open
source philosophy. In the following we identify and discuss what are, in our
opinion, four main beneficial factors of openness, namely availability, cost, dis-
tributability, and community.

Availability The first benefit of opening up content is an increased fruibility
of information. The right to redistribute it increases the number of providers,
thus consumers have more choice and more possibilities to obtain it.

Independence from a single distributor has a number of advantages. As
an example, in January 2010 the government of the United States has asked
the sourceforge.net website (which is popular for hosting open source software
projects) to deny access to users connecting from embargo countries such as
Sudan, Syria, Iran, North Korea, and Cuba [2]. Such restriction is clearly
against Section 5 of the open source definition [21], which prohibits discrimi-
nation against any person or group of persons. Although such restriction pre-
vents people in some countries from downloading software from sourceforge.net,
thanks to the redistribution clause of open source licenses, the very same projects
could be hosted and distributed by other providers outside USA, thus bypassing
the embargo restriction. When it comes to open source software, availability
also concerns the source code of the application being distributed. By enabling

10

user access to the inner working of a program, adaptation (for example to enable
running the application on a different computer architecture), reuse of compo-
nents, and interoperation with other programs are possible. Finally, open solu-
tions also help survivability of digital content, as proven by the Caspar project 1

promoted by the European Union. Open formats and applications ensure that
content created today would still be accessible in the future, because all the
specifications on how to decode data will remain available. On the contrary,
with proprietary solutions future access to information depends on the interests
of the single or few entities that own the source code of the tools used to create
and manage data.

Cost The choice of employing an open solution rather than a proprietary one
is often related to the cost of deployment or of ownership. While it is true that
most open solutions come at no-cost, we must stress that the real benefits of
them should be made concerning the freedom of use rather than by looking
at their price. In fact, institutions should allocate some budget even to free
solutions [22]. Cost advantages also come from the fact that open solutions are
typically not tied to a single vendor. As such, the end-user can choose between
different offers, and select the one that best suits his needs.

Distributability Content often needs to be adapted before being used: trans-
lation, language simplification, etc. With non-free content such changes cannot
be redistributed, meaning that end-users cannot benefit from adaptations made
by others. Conversely, with free content the users are allowed, and encour-
aged to redistribute new and improved versions. The distributability factor is
strongly tied with availability and the cost factor: if content is available at no
cost in the first instance, re-distributability is easier as there is no cost involved.

Community In [22] the authors highlight “community building” as an es-
sential factor for successful deployment of open source solutions. Behind every
open source project stands a community of people committed to work, test,
document and contribute back using their knowledge and time.

The importance of the community is very well resumed in a variation of the
previously cited Newton’s quote that reads:

(. . .) advances are made by standing on the shoulders of giants.
(. . .) if there are enough of you, you can advance just as far by
stepping on each others toes.

The idea of sharing, improving, and contributing back is central to scientific
research and progress, as all important scientific discoveries have generally been
built on the results of previous works. In his “The cathedral and the bazaar”
[23] essay, Eric S. Raymond notes how the development of open source software
benefits from the seemingly confusing activities of developers all around the
world. Moreover he mentions that “Good programmers know what to write.
Great ones know what to rewrite (and reuse)”, which emphasizes the freedom
given by open source licenses. Several researchers have tried to map and describe
the relations inside open source communities [18, 1], and such studies have shown

1http://www.casparpreserves.eu/

11

that people contributing to open source projects are motivated by altruism, skill
improvement, and gift giving as a way of getting new ideas. As a side-effect,
work done in the community is recognized and represents useful professional
experience for the contributor.

12

Chapter 4

Open? in Education

1

In this section we move our focus toward open solutions in education. More
specifically, we want to highlight the useful characteristics of openness in respect
to the two main tasks of education: teaching and learning.

As noted in [15], open source has always been closely related to the academic
world. Open source is having a great impact in driving the shift toward digital
education; in particular, in this digitization we can recognize four directions,
namely virtual universities, online classes, education portals, and courseware.
To effectively support high-quality digital education, large investments are re-
quired. In this context, open source software offer an alternative to expensive
proprietary solutions, thus providing a cost advantage.

It is nonetheless our opinion that the real benefit of open source and open
content in general relies not on the cost factor but on the ideology behind it.
We argue that opening up education increases the availability of high quality
ready to use content. This has the effect of lowering the effort required to
create teaching support material, leaving space to the actual knowledge transfer.
Being able to reuse, adapt, extend and redistribute other people’s work helps
keeping knowledge up-to-date or suited for specific target groups. On the other
hand, freely available content lowers the access barriers for students, and more
appealing classes can be delivered.

Based on these considerations, we can identify four main concerns related
to freedom and openness in education: making existing knowledge and content
available, enabling modification of content or creation of new content, support-
ing knowledge and content transfer, enabling sharing and collaboration. Each
of these concerns entails different requirements that need to be detailed.

The first barrier to overcome is making existing knowledge and content avail-
able. As the amount of information continues to grow, it is essential that past
findings and discoveries are organized and easily accessible. Easing access to
knowledge can be achieved at different levels, such as by removing the cost as-
sociated with information, by providing indexes and organized collections, by
adapting the content to the consumers (according to their language, age, or
education).

Whereas e-learning platforms take the necessary steps to deliver education

1We use the term Open? to group all the different facets of openness.

13

in the digital realm, open source solutions provide the necessary tools to do so,
and ensure transparency and flexibility as well as increase knowledge exchange
[14].

The second step concerns the modification of existing content and the cre-
ation of new works. If content cannot be modified to fulfill specific users’ needs
it is often useless (for example, teaching materials). Accordingly, tools for creat-
ing or modifying works need to be easily available to end-users. As the creation
and modification of open content depends on such tools, open solutions to this
problem are preferable.

To support the transfer of knowledge and content, open standards for repre-
senting information need to be employed. Communication can only take place
if all parties share a common language, and no one has to be forbidden to learn
it. In this respect, proprietary file formats may prevent a large number of users
from accessing the information if the corresponding software application is not
available.

Finally, to promote knowledge sharing and collaboration amongst users, spe-
cific platforms need to be deployed.

4.1 Open Knowledge and Content

The most well-known source of open knowledge on the Internet is probably
Wikipedia 2. Created in 2001 by Jimmy Wales and Larry Sanger, Wikipedia
aims at enabling worldwide free access to knowledge, promoting collaborative
authoring and reviewing. The project was created as a spin-off of a more restric-
tive online encyclopedia called Nupedia, which relied on expert and dependable
sources for the creation of content. Wikipedia is praised for the large amount of
information that can be found on it; nevertheless, critics concerning the quality
of some articles have appeared. Figure 4.1 shows the evolution in the number
of articles in the english Wikipedia from 2001 to 2007 3.

Figure 4.1: Article count for the English Wikipedia, from 2001 to 2007

A higher form of free divulgative activities are open learning initiatives, as
promoted by several universities and colleges around the world; examples of

2http://www.wikipedia.org
3From http://en.wikipedia.org/wiki/File:EnglishWikipediaArticleCountGraph_

linear.png

14

these open learning portals include MIT OpenCourseware 4, Stanford School
Engineering Everywhere (SEE) 5, and Open Michigan 6.

Concerning open content, several sites propose free audio and graphics re-
leased under Creative Commons licenses: Jamendo 7, the Free Sound Project
8, Open Clipart Library 9, etc.

4.2 Open Tools and Applications

Free software has provided a major input in the creation of open content. The
availability of completely open computing platforms (for example, GNU/Linux)
has lowered the cost of ownership of computers with a free alternative to propri-
etary solutions (namely Microsoft Windows 10). The beginning of free software
can be dated back to 1984, with the creation of the GNU operating system
and the publication of the first GPL license. The success of free software has
been sustained by a large number of projects dedicated to both the creation of
open alternatives 11 to proprietary applications as well as new and innovative
solutions.

4.2.1 Free or Open?

Regarding software, very precise definitions of what is free and open source
software have been made. According to the Free Software Definition 12, software
is free if the end-user has the freedom to run, copy, distribute, study, change
and improve it. Conversely, the Open Source Definition 13 provides a list of
ten points that characterize open source software. It should be noted that the
term Open Source was more of a marketing operation, started to make free
software more appealing to industry. In particular, the main issue comes from
the meaning of free, which refers to freedom (as libre in French) but can be
intended as free of cost too (gratis). It is important to stress the fact that a
major trait of free and open source software is the ability to distribute, change
and improve existing software. This ensures that access to content created with
such software is not dependent on a single entity as it is often the case with
proprietary software.

4.2.2 Against software piracy

Computers, software and tools are of paramount importance in today’s edu-
cation programs. Not only do computers support the teaching and learning
process, but for some classes they are essential tools. For some fields, the choice
between proprietary and free platforms is hindered by the fact that no viable
open solution exists. When free alternatives do exist, in many cases teachers

4http://ocw.mit.edu/index.htm
5http://see.stanford.edu/SEE/Courses.aspx
6http://open.umich.edu/education
7http://www.jamendo.com
8http://www.freesound.org/
9http://http://www.openclipart.org/

10http://www.microsoft.com
11http://www.osalt.com/
12http://www.gnu.org/philosophy/free-sw.html
13http://www.opensource.org/docs/osd

15

don’t feel compelled to switch to free software, because they don’t see any con-
crete advantage. Most users think that it is legitimate to copy and distribute
proprietary software within educational institutions [26]. The need to educate
teachers and students on the rights given by software vendors can be viewed as
a way to increase awareness over illegal software distribution (also called piracy)
[29]. In this context, free software represents an alternative that benefits both
teachers and students: free software is easy to obtain, legitimate to copy, and
enables both students and teacher to freely use the software at no cost.

4.2.3 Development tools

Although not necessary in the context of general education, in order to create
open application and enable their modification according to the principles of
free software, free development tools are required. In this context, free compilers
and programming environments are essential to fully benefit from open source
software. Most of the open source tools available today have been built thanks to
the development tools created within the GNU Project [9]. For computer science
students such tools represent an affordable alternative to expensive proprietary
solution.

4.2.4 Operating systems

The first step in digitalizing education requires providing access to computers
and their peripherals. Accordingly, operating systems need to be installed on
computers. Because open source tools are typically available for a wide range of
operating systems, users are not tied to a single platform, but are free to choose
amongst proprietary or free operating systems. The quality and completeness of
today’s free operating systems (for example Ubuntu, shown in Figure 4.2), such
as those based on the Linux kernel, rivals that of their proprietary counterparts
(i.e. Windows and OSX). For educational tasks the investment required by free
solutions is noticeably lower than that of proprietary ones, as no licenses are
required to run software on multiple computers within the institution.

Figure 4.2: GNOME desktop on Ubuntu GNU/Linux

16

4.2.5 Document editors

In the context of document editors, the most successful example is undoubtedly
Openoffice.org 14. The document writing and presenting capabilities of this free
office suite represent an important contribution towards an open education, as
both students and teachers are often required to write reports and dissertations
or to present some subject.

Figure 4.3: Openoffice.org Writer application

This office suite is also available on multiple operating systems, meaning that
students and teachers are not tied to a single platform, and is translated into
various languages. Moreover, as the software is available at no cost, students
can freely use it at home for their homework (unlike proprietary solutions like
Microsoft Office which would require a personal license even for home use).

4.2.6 Graphic editors

Since the best way to spread information is not always textual there is a major
need for tools allowing for creating and modifying figures, schemes and drawings.
The open source community provides, amongst others, two tools that allow for
handling graphical elements in a professional way: GIMP 15 and Inkscape 16

(shown in Figure 4.4). Besides being open source and free to use both are
available for multiple operating systems (e.g. Linux, Windows, OSX).

GIMP (GNU Image Manipulation Program) allows for creating and manip-
ulating graphic images. Its functionality encompasses photo retouching, image
composition, and image authoring and is a valid alternative to commercial prod-
ucts such as Adobe’s Photoshop and Illustrator.

In contrast to GIMP and other raster (bitmap) graphics editors Inkscape is
an open-source vector graphics editor perfectly suited for web graphics, technical
diagrams, icons, creative art, logos, etc. which is currently widely used by the
community (for example, thousands of images on Wikipedia are created with
Inkscape).

14http://www.openoffice.org
15http://www.gimp.org
16http://www.inkscape.org

17

Figure 4.4: Inkscape SVG Editor

4.2.7 Web tools

The World Wide Web is an inexhaustible source of data and information that
can be visualized by means of web browsers. The open source community pro-
vides, since 2004, one of the most customizable web browsers of the world:
Firefox 17 (Figure 4.5). Firefox was born from the Mozilla 18 project, which in
turn was based on the source code of a proprietary web browser: Netscape Nav-
igator. Thanks to the open source community Firefox continuously improves
and thousands of add-ons have been created and are available for free.

Figure 4.5: Mozilla’s Firefox web browser

Alongside with Firefox, e-mail clients such as Thunderbird 19 help people
communicate using free software. Furthermore, because of a strong link between
open source communities and the Internet, a number of tools have been created
for supporting different web related activities such as transferring files, text and

17http://www.firefox.com
18http://www.mozilla.org
19http://www.mozillamessaging.com

18

video conferencing, etc. Because communication is essential in learning, these
tools can be successfully employed in e-learning scenarios.

4.2.8 Scientific Tools

Besides finding and producing scientific documents most of the time is spent by
research in processing and analyzing data. For this purpose several open source
software have been developed over the years for handling specific problems: In
the following we review some of them.

Scilab 20 (Figure 4.6) is a free platform for numerical cumputation devel-
oped by INRIA (French National Institute for Research in Computer Science
and Control) which is a worldwide reference software in academia and indus-
try. Scilab’s main features range from linear algebra, polynomials and rational
functions to differential and non-differential optimization, while being mostly -
but not completely - compatible with the reference commercial product of this
domain, Matlab21.

Figure 4.6: Scilab free platform for numerical computation

Similarly to Scilab, Octave22 is primarily intended for numerical computa-
tions and provides means for solving linear and nonlinear problems numerically,
and for performing other numerical experiments using a language that is mostly
compatible with Matlab.

Another example of the success of open source software in the scientific
domain is the R project23, which has become a de facto standard among statis-
ticians for the development of statistical software.

20http://www.scilab.org/
21http://www.mathworks.com/products/matlab/
22http://www.gnu.org/software/octave/
23http://www.r-project.org/

19

The common characteristic of the aforementioned software projects is their
openness along with the fact that they are developed for several operating sys-
tem, making thus them available to all kinds of users. Moreover, the open
source nature of these projects offers a considerable advantage in terms of doc-
umentation and help along with several specific plug-ins made available by the
community.

4.3 Open Formats

Beside open source applications and tools, essential to the development and
spread of free knowledge in today’s digital age, are open formats. As pointed out
in [13], open standards are necessary to support interoperability and platform
independence, maximize access, and provide long-term access to information.
An open format relies on a publicly available description of the storage details,
not encumbered by patents or any other form of restriction. The details of a
format allow for the implementation of free editors and viewers, and ensure the
survivability of the data in the future. A number of open formats exists and
have been embraced by a number of software vendors (either open source or
proprietary). In this section, the mainstream formats will be presented and
reviewed.

4.3.1 XML

XML (eXtensible Markup Language) is a structured text format that is used as
base for a large number of open formats (for example ODF and SVG). Because
several tools exist to manipulate XML, applications can easily implement it.
However, it is important to note that although the XML format itself is open,
without a clear specification on how the information is structured within the
document, it is difficult (sometimes almost impossible) to extract its contents.

4.3.2 Document formats

The Open Document format (also known as ODF), which stands for OASIS
Open Document Format for Office Applications, is targeted at office data such
as text documents, spreadsheets, graphs, and presentations. In contrast to
proprietary formats such as Microsoft’s Office ones, the full specification of the
format is freely available and has been implemented by the OpenOffice.org suite.
The format has been adopted by a number of governmental entities as a standard
for public administration data. In 2007, ODF became an ISO standard, which
proved its widespread support by major software developers such as Adobe,
IBM and Sun Microsystems (now Oracle). In order to compete, Microsoft had
to open their own formats 24 and release their specifications.

Another document format well known amongst the scientific community is
LaTeX. LaTeX is a document markup language and document preparation sys-
tem based on the typesetting system TeX 25. Latex is used to format scientific
documents such as technical reports, journal articles, and conference proceed-
ings. Latex documents are text files written using a special syntax that describes

24http://en.wikipedia.org/wiki/Office_Open_XML
25http://en.wikipedia.org/wiki/TeX

20

the structure of the document rather than the details of the formatting. Docu-
ments can be transformed into publishable documents (for example in the PDF
or Postscript format) by a compiler, which combines the Latex code with a tem-
plate file that defines how the document is to be rendered. Being an open source
project, Latex is available on a number of platforms, and enables high-quality
document formatting and quick reformatting of the content.

4.3.3 Graphic formats

The Portable Network Graphics 26 format was created in 1995 as a replacement
for the then patent encumbered format GIF 27. As a fully documented open
format, several tools are available to create, view, and manipulate PNG images.
Because of its open nature, distribution of open source graphic content is typ-
ically achieved using this format. Another format worth citing is the SVG one
28. While PNG is suitable for storing pictures, for vector graphics SVG enables
scalable pixel perfect rendition of vector images.

4.3.4 Media formats

Similarly to PNG, the Vorbis audio codec 29 was created as an alternative to
the patent encumbered MP3 30 format, that required paying licensing fees for
its usage. Vorbis encoded audio is typically distributed in the form of an OGG
file (where OGG is the name of the container). Vorbis is not the only free
audio codec, several others exist such as Speex 31 or FLAC 32. Concerning
videos, several open compression codecs are available, for example Theora 33

and WebM 34.

4.4 Open Web Content Managers

In addition to the ability to find, create and modify content by means of the
aforementioned tools and formats, a further step is required to promote the shar-
ing of knowledge to specific target groups. This is the aim of virtual learning
environment (VLE), which are systems aiming at facilitating both the teaching
and the learning process by providing tools specifically designed for this pur-
pose. To avoid the ambiguity resulting from the plethora of terms that are used
in different countries and communities to define similar environments, such as
Learning Management Systems, Content Management Systems, Learning Con-
tent Management Systems, etc. we will follow the definition of VLE given in [6]
which states that a VLE can be identified by the following features:

• A VLE is a designed information space

26http://en.wikipedia.org/wiki/PNG
27http://en.wikipedia.org/wiki/Gif
28http://en.wikipedia.org/wiki/SVG
29http://www.vorbis.com/
30http://en.wikipedia.org/wiki/MP3
31http://www.speex.org
32http://flac.sourceforge.net/
33http://www.theora.org/doc/Theora.pdf
34http://www.webmproject.org/

21

• A VLE is a social space (education interactions occurs in the environment)

• The virtual space is explicitly represented

• Students are not only active but also actors (they co-construct the virtual
space)

• VLE are not restricted to distance education but they also enrich class-
room activities

• VLE integrate heterogeneous technologies and multiple pedagogical ap-
proaches

• Usually VLE overlap with physical environments

Among the multitude of open source projects in this domain we choose to
present here the most popular and, in our opinion, most interesting projects
highlighting the benefits of their openness.

4.4.1 MOODLE

MOODLE is an acronym for Modular Object-Oriented Dynamic Learning En-
vironment35 and it is one of the most popular open source Course Management
Systems with more than 37 mio users all around the world as of 201036, es-
pecially within universities (Figure 4.7 shows the MOODLE web site of the
University of Fribourg). MOODLE aims at assisting the educators in the cre-

Figure 4.7: Moodle at the University of Fribourg

ation of course web sites by providing tools allowing to easily upload and share
course materials, gather and review assignments while additionally providing
chat and forums functionalities.

The open source nature of the project is certainly one of the major reasons for
the popularity of MOODLE which thanks to its huge and engaged community
offers more than 700 modules and plug-ins spurred from the different needs of
its users.

35www.moodle.org
36http://moodle.org/stats

22

4.4.2 Claroline

Claroline 37 is a widely used open source eLearnig and eWorking platform which
counts, as of 2008, more than 200000 installed versions on more than 100 coun-
tries, mainly in schools and universities (e.g. the University of Neuchâtel) but
also in training centres, associations and companies. It comprises a list of tools
allowing for publishing documents in several formats, prepare and manage on-
line exercises, managing an agenda highlighting tasks and deadlines while also
providing means of communication such as public and private forums.

The impact of the openness of Claroline is made clear by the several forks
of the project that have given birth to new independent communities such as
Dokeos38 (in 2004) and Chamilo39 (in 2010).

4.4.3 Wikis

A very interesting way to share and collaboratively manage information is pro-
vided by Wikis, which are websites allowing for easy creation and editing of
interlinked web pages via a web browser. The use of a simplified markup lan-
guage or a WYSIWYG (What You See Is What You Get) text editor make
them particularly suited for non IT experts to work on collaborative knowledge.

The most famous example in this domain is certainly the MediaWiki40 pack-
age which was originally developed for the free encyclopedia Wikipedia41.

Along with MediaWiki, other wiki projects have been developed. One of
the most interesting is DokuWiki42, an open source wiki software which mainly
aims at creating and managing documentation. While being similar to other
wiki software, Dokuwiki is particularly easy to install and manage, because it
doesn’t require a database (all data is stored in plain files which remains readable
also outside the wiki). Hence, Dokuwiki is particularly well suited for creating
ready to go collaborative spaces where students can discuss ideas and keep track
of them such as for projects of groups of students.

4.5 Open tools for open content for an open ed-
ucation

In this chapter we presented some of the existing open solutions that can be
employed in an educational context. We have presented examples of free content
available on the Internet, and listed some of the free tools that enable the
creation of new content and modification of existing one. Furthermore, we
have provided an overview of the formats that enable content to be shared and
accessed by others and platforms that enable collaboration between people and
support e-learning. In this regard, we argue that the technical limits to opening
up education are minimal, and it is time for teachers and institution to really
consider opening up the learning process.

37http://www.claroline.net
38http://www.dokeos.com
39http://www.chamilo.org
40http://www.mediawiki.org/wiki/MediaWiki
41http://www.wikipedia.org
42http://www.dokuwiki.org

23

Chapter 5

Open source in Computer
Science classes

In the previous chapter we have dealt with a definition of openness, and listed
several examples of successful open source platforms. In the following of this
paper we will focus on the impact that open source has on teaching computer
science at the university level. In this regard, two different concerns can be
considered; on one hand, computer science students need to employ software in
order to complete their exercises or to experiment with some technology. On
the other hand, the goal of the university is also to teach how existing software
works, and how to write new software. Whereas for the first concern the same
examples as proposed in the previous chapter are valid, for the second concern
a more in depth discussion is necessary.

It is our understanding that to better learn some study matter a complete
and unobstructed view of each subject must be given. As a simple analogy,
if somebody wants to learn the mechanics of a car, he should be able to work
on a real car and explore its inner working: the same should happen to the
teaching of computer science. Because open source software can be freely studied
and modified, it represents an ideal field for experimenting with software for
computer science students.

The rest of this paper thus explains the benefits of employing open source
software and open learning techniques, analyzes some of the possible issues and
purposes some solutions to mitigate such problems.

5.1 Teacher perspective

With respect to the previous analogy, being able to link the knowledge com-
monly found on textbooks with real-world examples empowers the teaching
activity by providing a more complete overview of the subject. From our expe-
rience, while most of the traditional textbooks fail at providing specific docu-
mentation on how the presented topics are implemented in real systems, there
exists a large technical literature (in most of the cases freely available) that
covers almost all details about them. On the downside, constructing such link
between theory and practice can be time consuming, especially when classes are
based on dated textbooks for which it is difficult to find up-to-date concrete

24

examples.
Another problem that is rooted in the very nature of open source is the ease

of copying from existing solutions, thus the plagiarization of others’ work. This
problem can be overcome by introducing new challenges that require more than
just wrapping existing solutions, for example by letting students work on real
world problems such as in Google’s Summer of Code initiative 1.

5.2 Student perspective

Students benefit from open source software and open learning techniques be-
cause of the additional amount of information that is made available to them.
The ability to share information amongst students, retrieve existing information
from multiple sources, achieve a better understanding of the topics being dis-
cussed in the class by digging into real world examples, represent an opportunity
that should not be underestimated.

In this regard, the goals of Summer of Code initiative best resume the ad-
vantages of having students work on open source projects:

• Create and release open source code for the benefit of all

• Inspire young developers to begin participating in open source develop-
ment

• Help open source projects identify and bring in new developers and project
managers

• Provide students with the opportunity to do work related to their academic
pursuits during the summer

• Give students more exposure to real-world software development scenarios

Because the source code in open source software is typically written by pro-
grammers, for programmers, the effort required by the student might be higher
than with simple examples made for educational purposes. However, the avail-
ability of source code that can be reused within academic projects enables stu-
dents to go further and stop reinventing the wheel.

5.3 Case Study: Operating System Project

In this section we present our experience and findings concerning the use of open
source software in the context of a class teaching the principles of operating
systems. The operating system course is a 3rd year (5th semester) mandatory
class for students with computer science as their main branch. In the past three
years (2007-2009), the authors have been involved in the exercise and project
activities of the class.

On the theoretical side, the class was based on a well-known book by Prof.
Tanenbaum [28], which provides an easy to read and understand overview of

1http://code.google.com/intl/it-IT/soc/

25

all the concepts surrounding operating systems. On the practical side, a pro-
gramming exercise focusing on a real operating system kernel 2 (i.e. Linux) was
proposed. In order to bridge the gap between the theory discussed in the class
and the programming work, two additional books and presentation slides were
employed.

From our point of view, we concentrate on describing the experience we
had in managing the project. Having complete freedom on this part of the class
enabled us to focus on the objectives that we wanted to attain. Concerning both
the class and the exercise part, the direction was given by the textbook and by
the professor (namely Prof. Béat Hirsbrunner and Dr. Michèle Courant).

5.3.1 Previous years

In the years before 2007 the operating system project was based on another
operating system, named Minix 3, whose source code was also available. Un-
fortunately, the license terms for using such source code made it impossible to
use it for non-educational purposes. While such restriction might seem of low
importance for a computer science class, we felt that working on a project that
could not be used outside the university was not motivating for students.

Moreover, for organizational needs, the original project would have needed
to be reformulated in order to avoid plagiarism with previous years’ solutions.
Accordingly, we decided to completely turn the page and start a new project
from scratch, by integrating novel ideas. It was our opinion that working on a
widely used operating system such as Linux would raise students’ interest and
would represent a plus on their curriculum.

5.3.2 The class

The Operating Systems class (IN.5012) is targeted at 3rd year computer science
bachelor’s students (5th semester) and provides 5 ECTS. The class is also open
to people in the business informatics branch, and consists in 2 hours of teaching
followed by 1 hour of exercises. As a prerequisite, students must know the
C programming language (1st semester class) and have followed the algorithm
class (3rd semester). Beside exercises focusing on theoretical aspects of the topic
reviewed in the class, a mandatory practical project is proposed. In each of the
considered semesters, on an average of 13 students followed the class.

5.3.3 Project’s overview

The goal of the project was to create a module (i.e. a software component) for
the Linux 4 kernel that simulates a communication channel, technically named
pipe. Such development requires the understanding of different key concepts
of operating systems, such as locking mechanisms, process management, and
device access. These topics are discussed theoretically in the class and are thus
expected to be known by the student.

2The kernel is the part of the operating system responsible for running applications and
enabling access to hardware devices

3http://www.minix.org
4http://www.kernel.org/

26

Figure 5.1: Pipe

Figure 5.1 shows the basic behavior of a pipe. An application can use a
function read to read from the pipe, whereas another application can put data
into the pipe by calling the function write. In this sense, two processes commu-
nicating through a pipe can be viewed as two persons speaking on the phone. A
pipe implements a synchronous communication channel, meaning that certain
semantic aspects need to be considered:

• only one application at time can access the pipe for writing;

• the pipe itself can store some information waiting for the reader to start
reading it;

• when the space in the pipe is full, the writing application must be sus-
pended (so as not to write anymore data);

• if the writing application has been suspended, it must be resumed as soon
as there is space for writing in the pipe;

• when there is no information to be read, the reading application must be
suspended;

• as soon as new data is available, the suspended reading application must
be resumed.

Beside functional aspects, students were required to write a technical report
of their module and to put comments in the source code (in order to make
understanding easier). Furthermore, an oral presentation of the work done was
scheduled at the end of the semester.

Developing for the Linux kernel does not require any proprietary software; as
such, students had the opportunity to use free software only (compiler, editors,
etc.). Finally, in order to avoid proposing the same goals every year, small
changes were made to the project: more specifically, in the second year (2008)
the pipe device was also required to perform some sort of encryption of the data,
whereas in the third year (2009) the data written to the pipe would have made
the keyboard light flash as in Morse code.

5.3.4 Didactic aspects

The proposed project had different didactic aspects and goals, which can be
resumed as follows:

Know how to redo/know how to repeat Understanding of the funda-
mental concepts of kernel programming, modules, devices interfaces and process
management. Understanding of the inner working of a pipe device, its semantic
and the access functions (read, write).

27

Convergent know-how Programming of a Linux device module implement-
ing a pipe. Implementation of a sample application which uses a pipe for com-
munication.

Divergent know-how System and kernel development issues. Improving the
knowledge of the C programming language. Knowledge of low-level debugging
techniques. Improving oral and writing skills through the final presentation and
the written report.

Know how to be/know how to become Understanding the differences
between system and application programming. Known how to test a device
module.

It should be noted that we have formally devised such aspects only a-posteriori,
because the project had already started when such knowledge was learned in
the Did@ctic classes; the intended objectives were nonetheless the same.

5.3.5 Evaluation

The final grade for the project was composed of 1/3 for the code, 1/3 for the
documentation and 1/3 for the presentation. As for exercise series, the topics
discussed during the project (including proposed short exercises or to-do) were
part of the final writte course exam. For the final grade, the project accounted
for 40%, the other 60% being determined by the written exam. This final eval-
uation was based on several factors, which included the implementation of the
module, the documentation and the final group presentation. For the program-
ming task, students were allowed to work in groups of maximum 3 people. Along
with the kernel module, an application that enabled testing of the module was
requested. Each student handed in his/her own documentation/report; mean-
while each group was asked to work on its own solution: students were informed
that plagiarism would not have been tolerated. If plagiarism was detected, each
participant of any group who plagiarized another’s work would automatically
fail the project part of the course (grade of 1). The final group presentation (20
minutes) had the goal of evaluating the student’s overall comprehension of the
topic.

For the implementation, the following criteria were applied:

• correctness: the code must have done what it was supposed to do (ac-
cording to the requirements given to the students). A test program was
to be written, to clearly show that the requirements are fulfilled. A bonus
could have been considered for each additional (that is, not included in
the requirements) functionality.

• structure: the code of the module needed to be divided, as needed, into
functions and modules.

• style: the code needed to have been easy to read, well indented, well
commented, and use clear, self-explanatory variable and function names.

For the documentation, the following criteria were applied:

28

• contents: the documentation must state and define the problem, describe
the implementation, the relevant details, important terms, as well as the
test scenarios that have been considered.

• structure: the documentation must have been well organized and struc-
tured (introduction, methodology, implementation, results, conclusion)

• style: the documentation must have been written with an appropriate
style (index, headings, formatting,...)

No limit was given on the length of the documentation. Nonetheless, the
recommended number of pages was set to 8. Finally, concerning the presenta-
tion, the guidelines given to the students asked for a brief introduction of the
project, followed by a description of the issues and problems encountered. The
presentation also included questions from the professor and the assistants.

5.3.6 Schedule

Instead of forcing students to commit to fixed weekly deadlines, only a final date
for handing in the project (at the end of the term) was set. Each week, during
the exercise hour, a short presentation introduced the details of the techniques
to be used to implement the concepts seen in the class and to advance in the
implementation of the module. Furthermore, the assistants were available for
helping students advance with the development and quickly resolve possible
issues.

The project was divided in 11 weekly parts, each consisting of:

• reading: reading chapters and sections of the proposed literature;

• browsing: quickly reading short sections in order to gain some insights
about the inner working of the kernel;

• experimenting: experimenting with tools and applications on the system
(for example to test the behavior of the module);

• programming: the actual development of the module;

• solving exercises: solving problems on paper in order to understand how
to implement concepts seen in the class.

Only the final prototype along with a written report and a test program were
due and were expected to be delivered and evaluated: there was no requirement
to hand-in weekly solutions for the proposed exercises concerning the project.
Those exercises were meant to help the student schedule the project, better
understand the system, test his/her knowledge, and evaluate his/her progress.
For help, the assistants were at the disposal of the student in order to solve
issues as soon as possible.

5.3.7 Resources

The project required several sources of documentation, namely textbooks and
web resources. More specifically the following books were employed:

29

Modern Operating Systems [28] by Andrew Tanenbaum is widely used
around the world as textbook for teaching computer science. All important
topics concerning the inner-workings of operating systems are reviewed: basic
concepts, system calls, security, common issues, etc. While being a very good
theoretical book, it lacks a concrete link with actual operating systems, thus
making it difficult to fully understand how some of the concepts really work.
This book was mandatory for the class.

Linux Kernel Development [17] by Robert Love focuses on the design and
implementation of the Linux Kernel. A number of the topics discussed in Tanen-
baum’s book are also present in this book, but in this case a link with their actual
implementation within Linux is present. This book was not mandatory neither
for the class nor for the project. Nonetheless, several copies were made available
to students.

Linux Devices Drivers [4] by Jonathan Corbet, Alessandro Rubini, and
Greg Kroah-Hartman, is a guide targeted toward the implementation of mod-
ules for the Linux kernel. By means of a number of examples, all important
concepts are discussed and explained. This book was deemed mandatory for
the project: fortunately, all its contents are released under an open licence, thus
freely available on the Internet.

Furthermore, students were advised to browse the available Linux source code 5,
fully exploiting the possibilities given by the open source nature of the project.

5.3.8 Summary of the experience

All students have generally been able to successfully conclude the project and
gained a positive mark. As the evaluation was done on different facets of the
project, no single point-of-failure penalized less-skilled students.

Although no formal evaluation of the project was conducted, the feedback
received from students (either on the written report or during the presentation)
enabled us to conclude that they have been generally satisfied by the topic and
by their work. Unfortunately it is difficult to really compare the rating of stu-
dents across the years, because no information is available about the evaluation
of the previous year’s project based on Minix. Furthermore, changes in the
classes given in the first two year and the presence of students from the business
informatics branch (with less programming experience), sometimes affected the
general level of understanding.

For the teacher This project has enabled a link between the theory presented
in the class and a real-world examples of a working system. It takes clearly some
time to prepare all the documents and slides, and to assist students in their work,
but the overall result is, in our opinion, worth the effort.

For the students The project has been successful in motivating students to
carry out their tasks. The project has been deemed long, but careful planning
and division of the tasks amongst the members of the group enabled all students

5http://www.kernel.org/

30

to complete their project on time. Students also appreciated the fact that
they had a chance to see how a real operating system works, and also had the
possibility to work on a widely used system. For some of them, the experience
working with Linux benefited their career prospects. Some of the comments
found in the written report include:

“Grâce au développement d’un module pour le noyau Linux, nous
avons amélioré notre compréhension de la communication interpro-
cessus.”

“Mit diesem Projekt wurde erfolgreich ein Kernelmodul geschrieben
(. . .) Dabei wurde viel über die Funktionsweise der Gerätetreiber
in Linux gelernt. Dieses Projekt stellt nun auch eine Basis dar,
einen komplexeren Gerätetreiber zu implementieren, welcher auch
eine Hardware ansprechen könnte.”

“Das Projekt ist ein guter Einstieg in die Kernprogrammierung,
weil man mit vielen Grundkonzepten Bekanntschaft macht. Was
das Projekt als Einsteigerprojekt besonders auszeichnet, ist dass
man diese zum Teil doch etwas komplizierten Strukturen, für die
Geräteoperationen kaum mehr braucht. Trotzdem bleibt die Auf-
gabe auch dann noch interessant.”

“At least it was fun to implement a real kernel driver. We had to
come over a lot of little and also some big caveats. (. . .) Personally
I feel know well enough educated to start with my own projects on
kernel drivers and have also already something in mind.”

“Le développement d’un pilote fonctionnant comme une redirec-
tion au travers d’un pipe a permis de se familiariser au base de
développement commune à tous les types de driver, tout en mettant
en pratique certaines notions du cours de système d’exploitation.”

Beside positive comments, some students noted how time was the biggest
constraint: due to it being a long project students are required to work regularly
and thus avoid rushing to finish the project in the last weeks. Conversely, real
difficulties and frustration were encountered by some students in the business
informatics branch, as it’s evident in some of the reports’ comments:

“Grundsätzlich war die Implementierung eines Linux Kernelmoduls
sehr interessant, schliesslich studiere ich nicht Informatik, wenn mich
solche Dinge nicht interessieren würden.”

“Nun es mag ja gut sein wenn ein angehender Informatiker schon
während des Studiums mit der Implementation eines einfachen Ker-
nelmoduls konfrontiert wird. Andererseits ist es fraglich ob es wirk-
lich Sinn macht die Studenten schon im Grundstudium mit einem
solchen, doch sehr spezifischen, Problem zu beschäftigen. Ich bezwei-
fle sehr dass wirklich jeder Informatiker während seines Berufslebens
mal einen Linuxkernel implementieren muss.”

31

To reply to some of the comments from students in the business informatics
branch were that negative toward the project, we should note that the class
was mainly addressed towards students with computer science as main branch.
Accordingly, the requirements were set a little bit higher than what is probably
expected in business informatics classes.

5.4 Closing remarks

Our experience with this project has been generally positive. The possibility of
working with open source technology has not only benefited students’ learning
but has also been pushing us forward and through our engagement in such
projects we too have gained some experience. Nonetheless, there are several
points that could be changed in order to improve the project. First, the didactic
aspects and pedagogical goals where never clearly defined nor discussed with the
students. In fact, students were only aware of the practical goals of the project,
namely the development of a Linux kernel module. We think that if the didactic
aspect of the project is put forward and exposed to the students, their motivation
can increase. Furthermore, the project left little space for students’ creativity:
the task was clearly assigned and the time to introduce personal modifications
was scarce. In this context, it should be noted that it is not feasible to leave
complete freedom to the student, as the effort required for assisting him would
be too much.

32

Chapter 6

Conclusion

The open source philosophy has changed the way content is created and shared
among people. Starting with free software, people have begun to share their
work for the benefit of others, and have enjoyed seeing their products being
embraced and improved by others. The same ideas have spread in other fields,
such as graphic arts, knowledge, or music and have resulted in a large amount
of open content that can be used, re-used, and re-distributed under permissive
licensing terms.

In this paper we presented an overview of open source and open content
usage in education. We first defined what open source and open content are,
and highlighted the differences between the terms copyright, ownership and
licenses. Moreover, we listed a number of examples of open source content and
software that are used today by millions of people.

Concerning the use of open source in computer science classes, we discussed
the related benefits and the issues. Finally we presented our teaching experience
within an operating system project.

Unfortunately, our experience at the University of Fribourg has ended, mean-
ing that our effort to improve the Operating Systems class cannot go further.
We had hoped that our colleague who has taken over the supervision of the
project would continue on our path, but unfortunately the project has been
scrapped for lack of resources. We are nonetheless confident that it could be
resumed in the future.

The take home message for this paper is that open source can have a posi-
tive impact on teaching computer science. Students get motivated to work on
existing open source projects and feel that this experience can improve their
general knowledge of a topic.

33

Bibliography

[1] Magnus Bergquist and Jan Ljungberg. The power of gifts: organizing social
relationships in open source communities. Information Systems Journal,
11(4):305–320, 2001.

[2] Dana Blankenhorn. Obama enforces trade embargo against open
source, Last Accessed December 2010. http://www.zdnet.com/blog/

open-source/obama-enforces-trade-embargo-against-open-source/

5698.

[3] C. Coppola and E. Neelley. Open source open learning: Why open source
makes sense for education. 2004.

[4] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. Linux
Device Drivers, 3rd Edition. O’Reilly Media, Inc., 2005.

[5] The MITRE Corporation. Use of free and open-source software (foss) in
the u.s. department of defense, 2003.

[6] P. Dillenbourg, D.K. Schneider, and P. Synteta. Virtual learning envi-
ronments. Proceedings of the 3rd Hellenic Conference ”Information and
Communication Technologies in Education”, pages 3–18, 2002.

[7] Cory Doctorow. ”intellectual property” is a silly euphemism, Last Ac-
cessed December 2010. http://www.guardian.co.uk/technology/2008/
feb/21/intellectual.property.

[8] Electronic Frontier Foundation. Open audio license, Last Accessed October
2010. http://en.wikipedia.org/wiki/Open_Audio_License.

[9] Free Software Foundation. Gnu, Last Accessed October 2010. http://

www.gnu.org/.

[10] Free Software Foundation. Gnu free documentation license, Last
Accessed October 2010. http://en.wikipedia.org/wiki/GNU_Free_

Documentation_License.

[11] Free Software Foundation. Gnu general public license, Last Accessed Oc-
tober 2010. http://www.gnu.org/licenses/gpl.html.

[12] Harald Welte, Last Accessed October 2010. http://gpl-violations.

org/.

34

[13] Brian Kelly, Scott Wilson, and Randy Metcalfe. Openness in higher educa-
tion: Open source, open standards, open access. In ELPUB, pages 161–174,
2007.

[14] Alex Koohang, Eli Cohen, and Keith Harman. Open source: A metaphor
for e-learning. Informing Science Journal, 8, 2005.

[15] Shaheen E. Lakhan and Kavita Jhunjhunwala. Open source software in
education. Educause Quarterly, (2), 2008.

[16] Lawrence Lessig. Creative commons, Last Accessed October 2010. http:

//creativecommons.org/.

[17] Robert Love. Linux Kernel Development (2nd Edition) (Novell Press).
Novell Press, 2 edition, January 2005.

[18] Wolfgang Maass. Inside an Open Source Software Community: Empirical
Analysis on Individual and Group Level. pages 66 – 71.

[19] Massachusetts Institute of Technology. Mit license, Last Accessed October
2010. http://en.wikipedia.org/wiki/MIT_License.

[20] Open Knowledge Foundation. Open definition, Last Accessed September
2010. http://www.opendefinition.org.

[21] Open Source Initiative. Open source definition, Last Accessed September
2010. http://www.opensource.org.

[22] Young Jeffrey R. Five challenges for open source. Chronicle of Higher
Education, 2004.

[23] Eric S. Raymond. The Cathedral and the Bazaar: Musings on Linux and
Open Source by an Accidental Revolutionary. O’Reilly & Associates, Inc.,
Sebastopol, CA, USA, 2001.

[24] Regents of the University of California. Bsd license, Last Accessed October
2010. http://en.wikipedia.org/wiki/BSD_licenses.

[25] Oshani Seneviratne, Lalana Kagal, Daniel Weitzner, Hal Abelson, Tim
Berners-Lee, and Nigel Shadbolt. Detecting creative commons license vio-
lations on images on the world wide web. In WWW2009, April 2009.

[26] Robert M. Siegfried. Student attitudes on software piracy and related issues
of computer ethics. Ethics and Inf. Technol., 6:215–222, December 2004.

[27] Richard Stallman. Did you say intellectual property? it’s a seductive mi-
rage, Last Accessed December 2010. http://www.gnu.org/philosophy/

not-ipr.xhtml.

[28] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall Press,
Upper Saddle River, NJ, USA, 3rd edition, 2007.

[29] George Teston. Software piracy among technology education students: In-
vestigating property rights in a culture of innovation, 2008.

[30] Sam Williams. Free as in Freedom: Richard Stallman’s Crusade for Free
Software. O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2002.

35

