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Abstract— This paper describes a distributed algorithm to
construct and maintain a peer-to-peer network overlay with
bounded diameter. The proposed approach merges a bio-
inspired self-organized behavior with a pure peer-to-peer ap-
proach, in order to adapt the overlay to underlying changes
in the network topology. Ant colonies are used to collect and
spread information across all peers, whereas pheromone trails
help detecting crashed nodes. Construction of the network
favors balanced distribution of links across all peers, so that
the resulting topology does not exhibit large hubs. Fault
resilience and recovery mechanisms have also been implemented
to prevent network partition in the event of node crashes.
Validation has been conducted through simulations of different
network scenarios.

I. INTRODUCTION

AS the computing power and the network bandwidth
available to the majority of computers increases, we ob-

serve a constant shift from centralized designs to fully decen-
tralized systems and applications. From a user perspective,
this evolution is mainly reflected in the growth of peer-to-
peer file sharing networks and distributed computing projects.
This transition started with networks that are now commonly
referred as unstructured pure peer-to-peer systems, because
no peer hierarchy exists, and each node is considered to
have equal capabilities. On one side, those fully decentralized
systems help managing resources that are, by nature, dis-
tributed (e.g. media files shared by different computers). On
the other side, they support the goal of improving robustness
and availability, by moving resources outside centralized data
centers into several computers distributed across the planet.

A major difference between peer-to-peer systems and more
traditional client-server systems is that the exact location
of the information or service provider is unknown to the
user. Thus, the main challenge in the development of such
applications is to provide efficient methods for information
retrieval, given that central indexes are generally to be
avoided. The problem of locating resources in large-scale,
fully decentralized and unstructured peer-to-peer systems can
be traced back to the birth of the GNUTELLA [1] network.
Although early fully distributed network applications, such
as USENET, had been able to solve the issue by simply
replicating indexes across all nodes, the large scales of
today’s networks (in respect of both size of the network, and
the size of shared contents) make such solutions impractical.
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Resource discovery in decentralized systems is typically
performed using flooding protocols or random walks [2]:
search queries are forwarded by each node to its neighbors,
up to a specified distance. Unfortunately, the explosion of
large scale sharing applications has brought to the surface
the inherent scalability limits of these methods, which are
responsible for a considerable fraction of all the traffic
generated by peer-to-peer networks [3].

To solve these issues, development in this field shifted
away from the initial and conceptually simpler approaches,
and moved to more complex but efficient solutions. One
research direction tackled the problem of mapping the in-
formation on the network by means of structured topologies
[4], [5]: managing large scale networks without large hubs or
bottlenecks has been made possible by enforcing strict rules
for the construction of the system and for the distribution
of information across nodes. Unfortunately, many structured
systems, such as distributed hash tables, are only suitable
for exact match queries, which limits their usage for generic
resource sharing networks.

Another direction taken to improve search efficiency while
retaining some of the advantages of unstructured networks
introduces the concept of super-peers: nodes with more ca-
pabilities and better connectivity (referred as super-peers [6])
are exploited to perform additional tasks, such as routing and
extensive caching of information. Super-peer networks can be
considered as hybrids between unstructured and structured
systems, combining the simplicity of the former with the
scalability of the latter. The concept of super-peers is cur-
rently implemented by many popular file sharing networks,
such as KAZAA [7], as well as by recent revisions of the
GNUTELLA protocols (with ultrapeers). Search efficiency of
super-peer networks is improved by the fact that a large
number of peers (leafs) connects to only a smaller number
of super-peers, as in a client-server model. This property
ensures that the resulting networks exhibit small diameters,
which can be exploited by existing search methods to limit
network overhead.

Small diameters can be obtained even in completely un-
structured networks through the optimization of connections
between peers, without introducing hierarchies or hubs. In
particular, the algorithm proposed in this paper, named
BLÅTANT-R, focuses on the construction of this kind of
optimized overlays where connections are re-arranged dy-
namically to ensure both short distances between every pair
of nodes in the system, and a fair distribution of links.
Building, optimization, and maintenance of the network is
based on fully distributed swarm intelligence methods, to



ensure adaptability and robustness. Although the algorithm
targets unstructured pure peer-to-peer networks, several other
usage scenarios can be considered, such as construction of
optimized topologies connecting super-peers or nodes in a
computational grid. It is important to note that the focus
of this paper is solely on the construction and maintenance
of the peer-to-peer overlay, leaving the implementation of
efficient search methods as a separate research topic. In this
paper we will thus avoid further consideration of existing
search methods for peer-to-peer networks; the interested
reader may find a detailed survey on this topic in [2], [8].

The rest of this paper is organized as follows: Section II
presents some related works in the field of peer-to-peer over-
lay construction, Section III details the algorithm, Sections
IV and V present the evaluation scenarios, respectively the
results obtained. Finally, Section VI summarizes the work
done and provides some insights on future work. As a peer-
to-peer network can also be viewed as a directed graph, for
the remaining of this paper the terms peer and node will be
used interchangeably.

II. RELATED WORK

We argue that decentralized search methods can benefit
from an optimized overlay topology, with increased effi-
ciency both in terms of bandwidth, and of response time.
Thus, before introducing other projects that are conceptually
close to the research presented in this paper, we shall define
our areas of interest. On one side, our focus is on the
construction of generic networks with bounded or minimal
diameter using completely distributed mechanisms. On the
other side, we are also interested in existing approaches that
aim at improving existing search methods by modifying the
topology of the underlying overlay network without relying
on semantic information about shared content or search
queries.

Low diameter networks are very easy to obtain: for in-
stance, power law graphs (also known as scale free graphs)
have typically low diameters and are very frequent in nature;
the Internet itself is a scale free network [9]. An example of
peer-to-peer network that explicitly constructs a power law
topology in order to keep a low diameter is PHENIX [10].
The protocol focuses on building networks that are highly
resilient to malicious attacks, with the identity of major hubs
kept hidden to prevent targeted attacks.

Similarly to power law graphs, super-peer networks also
rely on a small set of nodes that have a number of connec-
tions larger than average, but with the degrees following a
bimodal distribution. As a drawback, all these approaches
could suffer catastrophic consequences if hubs fail, thus
avoiding such topologies may be preferable.

Provided that a global knowledge of the network is avail-
able, low diameter non-power law graphs can be easily con-
structed through random augmentation [11] (i.e. by adding
random additional links between nodes). An example of
distributed overlay construction that approximates a random
graph is introduced by the SUPS project [12], with a protocol
that guarantees a low-diameter topology and balanced link

distribution. The motivation behind SUPS comes from the
observation that research on optimal topologies connecting
super-peers is scarce. The genericity of the proposed ap-
proach suggests a possible implementation of BLÅTANT-R
in similar super-peer scenarios. A similar idea is proposed in
[13], with the use of a structured overlay to connect super-
peers.

Sharing many features with random graphs, small-world
graphs also exhibit short diameters. Some examples of con-
struction of overlay networks with small-world properties are
described in [14], while another decentralized algorithm is
detailed in [15]. A completely different approach is proposed
by NEWSCAST [16], where an overlay with small-world char-
acteristics emerges from random exchanges of neighborhood
information between peers using a gossip-based protocol.

Finally, to improve the efficiency of flooding search pro-
tocols, the CLUSTELLA [17] system proposes a neighbor
selection strategy to avoid redundant links and reduce the
number of messages generated by each query.

III. THE ALGORITHM

This section describes the BLÅTANT-R algorithm, which
improves our previous algorithm [18] by introducing bal-
anced link distribution, fault resilience, and recovery mech-
anisms.

A. Optimization Rules

The algorithm optimizes the network according to
two simple rules depending on a user defined integer
parameter D > 0, such that the resulting diameter d is
D ≤ d ≤ 2D − 1. The following rules are evaluated to
determine whether a new connection is required, or if an
existing one is redundant. Both rules refer to a partial view
of the network maintained by each node.

Connection Rule. Let ni and nj be two non-connected
nodes in a directed network graph G, and dG(ni, nj) the
minimal distance from ni to nj in G. A new link between
nodes ni and nj is created if:

d′G(ni, nj) ≥ 2D − 1 (1)

Where d′G(x, y) is defined as min(dG(x, y), dG(y, x)).

Whereas the connection rule effectively reduces the
diameter of the network, the disconnection rule aims at
removing redundant links by breaking small cycles.

Disconnection Rule. Let ni and nj be two connected
nodes in the directed network graph G, i 6= j. Let
G′ ← G \ {ni}, and Ni be the set of all nodes adjacent to
ni. Node ni is disconnected from nj ∈ Ni if:

∃ nk ∈ Ni, k 6= j : d∗G′(nj , nk) + 1 ≤ D (2)

Where d∗G(x, y) is defined as max(dG(x, y), dG(y, x)).

In [19] it was proved that these rules are sufficient



for bounding the diameter according to the value of D while
removing unnecessary logical links.

In a centralized scenario it was also proved that the
disconnection rule cannot lead to a partitioning of the
network. Nonetheless, in order to ensure that it is safe
to concurrently use these rules even in a distributed
scenario, a restriction on the disconnection rule must be
applied. In particular, for each considered cycle, only
one node (in the current implementation the one with
the greatest identifier according to some ordering known
to all nodes in the cycle), called master, is allowed to
perform a disconnection. We now prove that under this
assumption, even a completely decentralized application
of the disconnection rule cannot result in a partitioned graph.

Lemma 1. Safeness of the Disconnection Rule. Concurrent
application of the disconnection rule, cannot lead to a
partitioning of the network.

Proof: Suppose first that a global knowledge of the
network is available. As only the corresponding master can
break its cycle by applying the disconnection rule, it is
straightforward to see that the graph remains connected.
Nonetheless in our completely distributed scenario, informa-
tion collected by the master about the status of connections
may be outdated, e.g. refer to cycles that have already been
broken. In such cases, it is necessary that a master does
not perform additional disconnections that may effectively
partition the network. To prevent this problem each master
could maintain a history of detected and broken cycles, but
this would require a large amount of memory on each master
node, especially in very dynamic networks. A better solution
is to only allow a master to remove connections with its
own neighbors, thus making it possible to rely only on local
and up-to-date information to verify whether the cycle has
already been broken.

As the optimization algorithm itself cannot break connec-
tivity, fault resilience problems are confined to node or com-
munication breakdowns. The following subsections provide
a detailed description of the algorithm; the pseudo-code has
been omitted in this paper because of space constraints, but
is available online at [20].

B. Network Peers

The proposed approach relies on a pure peer-to-peer
system: each peer is considered to have equal capabilities
(computing power, memory, bandwidth), and there is no
concept of super-peer. This choice is motivated by the fact
that in actual networks it is possible to assume that even the
slowest peer has sufficient resources to manage and process
the traffic generated by the algorithm. Each peer is in charge
of maintaining the network connected, determining if new
logical links are necessary according to the connection rule,
and removing redundant links according to the disconnection
rule.

1) Data Structures: Each peer ni maintains a set Ni of
addresses of other peers representing its neighborhood. The

maximum number of neighbors is m, although the algorithm
itself can only create mo connections, mo ≤ m, during
normal operations: the remaining free slots are reserved for
incoming recovery connections. Except during the connec-
tion phase, a node ni can only communicate with peers in its
neighborhood Ni. It is possible to make a distinction between
active and inactive neighbors. A neighbor of ni is considered
inactive until it has exchanged some information with ni.
We denote the fact that nj ∈ Ni is an active neighbor of ni
with ni ← nj ; inversely, an inactive neighbor is denoted
as ni 6← nj . As a node can only communicate with its
neighbors, ni ← nj implies ni ∈ Nj . To avoid the creation
of large hubs, the size of the neighbor set is limited.

Along with the neighbor set, each peer also keeps a fixed
size cache table (α), containing information about other
peers of the network. Each entry in the table has the form
〈nj , Nj , dj , tj , ti〉, where nj is the identifier of the remote
peer, Nj its neighbor set, dj the estimated distance from nj to
ni, tj the time on nj when that information was retrieved,
and ti the local time of the last entry update. The remote
time tj is used to determine if an incoming information is
older than the current one, whereas ti is used to clean up
old entries when the table fills up. The information found in
the α table is highly volatile, and is continuously updated by
ants traveling on the network. To support fault resilience, as
long as nj ∈ Ni the entry corresponding to nj in αi cannot
be removed: this ensures that the last known neighbors of nj
are always available and cannot be overwritten.

2) Peer Logic: At regular intervals c, each node evaluates
the information stored in the α table by first constructing a
graph, and then by computing the paths to other nodes in
this partial view of the network. A connection procedure to
most distant node is started if the connection rule applies.
In the same way, disconnection procedures are started when
cycles satisfying the disconnection rule are found. To avoid
unnecessary computations, the frequency of evaluations is
directly proportional to the amount of traffic, because the
availability of updated information depends on the number
of incoming ants.

C. Ant Species

The tasks of collecting information about the status of the
network, as well as connecting and disconnecting peers, are
performed by different species of ants.

a) Discovery Ants: Discovery ants are in charge of
wandering across the network and collecting information
about visited nodes. Each ant carries a fixed-size buffer V of
length lV with identifiers of each visited node, along with the
identifiers of their neighbors. As discovery ants may get lost
because of node crashes, they have a limited lifespan ι (max-
imum number of wandering steps); conversely, both when a
new node connects to the network, and with frequency 1/ι,
a new individual is generated with probability µ, ensuring
the survival of the population.

b) Construction-Link Ants: Construction-Link ants are
sent both by nodes wanting to join the network, and during



recovery procedures. A node can either accept the con-
nection, or forward it to one of its neighbors (randomly
chosen). Forwarding is required if the node has already
reached the maximum number of allowed neighbors. Nodes
that have a number of neighbors lower than m will accept the
connection with a normal-distributed probability N (m/2, 1),
thus favoring a balanced distribution of links. To avoid long
connection delays, each ant can only travel a maximum
number of steps clantttl: when the limit is reached the
connection procedure must be completed by the first visited
node with a free slot. When node ni accepts a Construction-
Link ant sent by nj , it adds nj to Ni and then sends the ant
back to nj , where ni is added to Nj .

c) Optimization-Link Ants: Optimization-Link ants are
instantiated by peers in order to optimize the diameter of the
network. When a node ni wants to create a connection with
nj it sends an ant to it. At nj the ant checks the estimated
distance to ni. If the estimated distance is > 2D − 1, or
no information is found in αj , the connection procedure can
continue. In this case, ni is added to Nj , and the ant migrates
back to ni, where nj is finally added to Ni.

d) Unlink Ants: Unlink ants remove the links as result
of the disconnection rule. When a node ni wants to discon-
nect nj ∈ Ni, it first removes nj from Ni, and then sends
an Unlink ant to nj in order to remove ni from Nj .

e) Ping Ants: Ping ants are used to keep up to date
information between peers when no other traffic does (low
traffic situations). An ant traveling from node ni to nj ,
updates the entry corresponding to ni in αj .

D. Pheromone trails

On each node ni we distinguish two types of pheromone
trails: outgoing trails γi, and incoming trails βi. These trails
are kept alive by ants traveling on the network: γi[nj ] is
reinforced by ants traveling from ni to nj , while βj [ni] is
reinforced by ants coming from ni to nj . At each migration
step, discovery ants preferably choose neighbors with low
γ concentration, thus ensuring a uniform network coverage
as well as a balanced load across all connections. The
concentration of β pheromone is used to detect unresponsive
or dead neighbors: when a trail completely evaporates, the
corresponding peer is deemed dead, and a recovery operation
is started. In order to keep connection alive even in low traffic
situations, ping ants are periodically sent between neighbors,
increasing the respective pheromone concentration, and up-
dating the respective neighbors information.

Each pheromone trail τ is reinforced according to the
formula:

τ ← δfill

At regular intervals ω, the evaporation process updates the
concentration as follows:

τ ← τ ∗ ψ

A pheromone trail is considered as completely evaporated
when its concentration falls below a certain minimal value.
For γ and β, mininimal values are γmin, respectively βmin.

E. Proper disconnection: Leaving procedure

When a peer wants to quit the network, it must ensure that
all of its neighbors remain connected. When node ni leaves
the network, it first sends an Unlink ant to all of its neighbors.
Next, it sends a Construction-Link ant to all its neighbors in
order to create a ring connecting all of them. Figures 1a) and
1b) depict an example topology before, respectively after the
departure of node ni.

Fig. 1. Leaving procedure

F. Improper disconnection (crash): Recovery procedure

The recovery procedure is used to prevent network par-
titioning in the event of a node crash. When a node nj
detects the departure of one of its neighbors ni by sensing
the complete evaporation of its γ pheromone trail, it may
start a recovery procedure. The exact behavior of the node
depends on whether nj 6← ni or nj ← ni.

1) if nj 6← ni : no information was ever received from
this connection. This situation can either happen when a
node leaves just after being connected, or when a connection
procedure is interrupted. In such cases, ni is just removed
from Nj .

2) if nj ← ni : some data was already successfully
exchanged through this connection. It is thus necessary to
ensure that connectivity of the network is preserved by
executing the recovery procedure. This procedure involves
removing ni from Nj and subsequently send Construction-
Link ants to ni as well as to all known neighbors of ni.
Figure 2a) shows an example situation, and Figure 2b) the
result of a recovery procedure started after the crash of node
ni.

Fig. 2. Recovery after node crash



IV. EVALUATION

This section presents and discusses results for both the
convergence of the algorithm to an optimal topology, and
the total communication cost. In particular, we evaluated the
behavior of the algorithm on different scenarios of deploy-
ment ranging from static and stable networks, to dynamic
and unreliable ones. For each scenario 20 different runs
were repeated. Table I shows the actual algorithm parameters
used during all simulation runs. The time is expressed in
iterations: an iteration corresponds to a migration of the
whole ant population (except delayed or loss ants in the
unreliable network scenarios). Each simulation run consists
of 10000 iterations.

Optimization parameter D 5
α size limit αmaxsize 28
max(|Ni|) ∀i m 8
Allowed optimization links mo 6
Discovery Ant lifespan ι 25
Discovery Ant birth probability µ 0.05
Discovery Ant vector length lV 15
Pheromone update δfill 1
Pheromone decay ψ 0.9
Minimum γ pheromone concentration γmin 0.25
Minimum β pheromone concentration βmin 0.005
Pheromone evaporation interval ω 1
Evaluation interval c 1
Construction-Link Ant lifespan clantttl 20

TABLE I
SIMULATION PARAMETERS

A. Simulation Scenarios

In all scenarios, communication between nodes is assumed
to be asynchronous: when an ant migrates between two peers,
the sender receives no feedback or acknowledgement from
the receiving peer. Whereas in reliable scenarios an acknowl-
edgement is implicit (because reception is guaranteed), in
unreliable ones no assumption can be made about the recep-
tion of the information sent. All scenarios share the same
initial topology of a typical local area network consisting
of 1281 nodes1. It should be noted that this topology is not
exactly reproduced during simulations, because some peers
would forward incoming connection requests when reaching
the limit of m = 8 neighbors (the maximum allowed in this
simulation).

1) Static topology (S): This scenario simulates just the
construction of the network, without further changes.

2) Dynamic topology with proper node disconnection
(DP): In order to evaluate the resiliency of the algorithm
we choose to simulate the addition and removal of nodes
as a homogeneous Poisson process {N(t) : t ≥ 0} with
intensity λ = 0.05 described by Equation 3. The process of
adding and removing nodes is started after iteration 100, to
avoid influence on network bootstrap, and stopped at iteration
5000, to determine if the network becomes stable afterwards.

1http://diuf.unifr.ch/pai/blatant/lan1281

P [N(t+ τ)−N(t) = k] =
e−λτ (λτ)k

k!
(3)

This results in an average frequency of one node addition
and one removal every 20 iterations, and an average total
number of 245 nodes added/removed during simulations.
New peers try to connect to a random existing node by
sending a Construction-Link ant. When a node is removed,
it executes the leaving procedure. Ants running on a node
that disconnects are killed.

3) Dynamic topology with improper node disconnection
(DI): As in the previous scenario, we simulate the addition
and departure of nodes as an homogeneous Poisson process.
Instead of performing a proper disconnection, departing peers
just leave the network and stop communicating, resulting in
the execution of recovery procedures. It should be noted that
this scenario is the most pessimistic one, because it supposes
that none of the peers leaves the network properly.

4) Reliable network (R): In this scenario no information
can be lost during transmission, and each ant takes exactly
an iteration to migrate from one node to another.

5) Unreliable network (U): To evaluate the fault tolerance
of the algorithm, this scenario simulates packet delivery
delays and packet loss as follows:
• at each migration, each ant has a probability of 10% to

be delayed until the next iteration;
• at each migration, each ant has a probability of 1% to

be lost.
Simulation scenarios include a combination of both the

static and the dynamic topology on both a reliable and
an unreliable network. For remaining rest of this paper,
simulation scenarios will be referred as:

1) S-R, for static topology on a reliable network;
2) DP-R, for dynamic topology with proper disconnection

on a reliable network;
3) DI-R, for dynamic topology with improper disconnec-

tion on a reliable network;
4) S-U, for static topology on an unreliable network;
5) DP-U, for dynamic topology with proper disconnection

on an unreliable network;
6) DI-U, for dynamic topology with improper disconnec-

tion on an unreliable network.

V. RESULTS

This section presents simulation results for the algorithm
in the previously described scenarios. In Figures 3-7 vertical
lines mark the 100th and 5000th iteration, corresponding to
the beginning, respectively the end, of addition/removal of
nodes in dynamic scenarios. More detailed statistical results
for selected measurements are available in Table II for the
diameter, Table III for the average path length, and Table IV
for the size of the largest connected component. Information
regarding iteration k are noted as θk and σk, for the average
value, respectively the standard deviation. The maximum
standard deviation across all iterations is noted as σmax,
whereas the mean standard deviation is noted as σmean.



Fig. 3. Diameter

Finally, |Gk| represents the average size of the network at
iteration k. The small average standard deviation of obtained
results confirms the stability of the algorithm.

A. Diameter and Average Path Length

The goal of the algorithm is to create and maintain a
network with bounded diameter. Figure 3 shows the evolution
of the diameter length during the simulation. In each con-
sidered scenario, the algorithm is able to bound the original
diameter pretty fast during the construction phase. In S-R and
all unreliable scenarios, the diameter always remains under
the 2D − 1 = 9 limit. Although surprising, the fact that
DP-U and DI-U perform better than DP-R and DI-R can be
explained by a side-effect of the additional links created by
the algorithm in unreliable scenarios.

In all but the S-R and DP-R scenarios, the diameter
slowly grows as new nodes start to connect and existing
ones disconnect. The reason behind this behavior is the very
limited number of neighbors allowed for each peer, the high
frequency of addition/removal of nodes, and the relatively
high packet delivery delay and packet loss probabilities. A
detailed analysis of the simulation results shows that recovery
procedures are executed even in the S-U scenario: this is
caused by missed pings that result in wrongful detections of
crashed neighbors.

Figure 4 shows the average path length. In all scenarios
this value conforms to results shown in Figure 3, with the
average path length consistently lower than the diameter and
well withing the bounds determined by D = 5. In dynamic
scenarios, as soon as the addition and removal of nodes
is finished (after iteration 5000), the average path length
converges close to optimum values around 5 and 6.

B. Connectivity and Edges count

In order to optimize the network, the algorithm constantly
modifies the topology. During this process, it is important
to ensure that the network does not become partitioned. To
analyze this aspect, we monitored the size of the largest
connected component as shown in Figure 5. In Section III it
was proved that if the topology is static (i.e. no new node

Fig. 4. Average Path Length

Fig. 5. Size of the Largest Connected Component

joins the network, and no existing node disconnects), the
optimization process is safe. This property has been validated
by simulation runs, where the size of the largest component
in the S-R scenario always corresponds to the total number
of nodes. Also shown in the same figure is the impact
of unreliable communication between nodes. In all reliable
scenarios, as well as in the static unreliable one, the size of
the largest connected component remains very close to the
total number of nodes. In unreliable dynamic scenarios the
network becomes slightly partitioned, but partially recovers
after iteration 5000.

Finally, Figure 6 shows that the number of edges is close
to the limit in all scenarios (≈ 1281∗m = 10248, ≈ 1281∗
mo = 7686). We also see that in all unreliable scenarios, the
algorithm makes use of the additional two free slots (m−mo)
available on each node dedicated to recovery procedures.

C. Communication cost

The total communication cost is proportional to the size
of ant populations. To take into account the fact that each
species carries a different amount of information, and to
abstract from the different ways in which this information
can be represented, we introduce the notion of token. Each
token stores the unique identifier of a peer and a numeric



Fig. 6. Edges count and average degree

S-R θ100 = 11.85 σ104 = 0.31
θ5000 = 6.1 σmax = 3.06
θ104 = 6.1 σmean = 0.41

DP-R θ100 = 12.15 σ104 = 0.22
θ5000 = 9.9 σmax = 4.92
θ104 = 6.05 σmean = 0.84

DI-R θ100 = 12.25 σ104 = 0.44
θ5000 = 9.4 σmax = 3.89
θ104 = 6.25 σmean = 0.83

S-U θ100 = 13.9 σ104 = 0.31
θ5000 = 6.1 σmax = 3.48
θ104 = 6.1 σmean = 0.38

DP-U θ100 = 14.25 σ104 = 0.31
θ5000 = 7.7 σmax = 4.2
θ104 = 6.1 σmean = 0.65

DI-U θ100 = 13.3 σ104 = 0.41
θ5000 = 7.95 σmax = 3.13
θ104 = 6.2 σmean = 0.75

TABLE II
DIAMETER θ

S-R θ100 = 9.31 σ104 = 0
θ5000 = 6 σmax = 2.19
θ104 = 6 σmean = 0.03

DP-R θ100 = 9.31 σ104 = 0
θ5000 = 7.57 σmax = 2.47
θ104 = 6 σmean = 0.47

DI-R θ100 = 9.54 σ104 = 0
θ5000 = 7.41 σmax = 2.42
θ104 = 6 σmean = 0.45

S-U θ100 = 10.40 σ104 = 0.01
θ5000 = 5 σmax = 2.41
θ104 = 5 σmean = 0.09

DP-U θ100 = 10.51 σ104 = 0.01
θ5000 = 6.04 σmax = 2.73
θ104 = 5.01 σmean = 0.29

DI-U θ100 = 9.95 σ104 = 0.01
θ5000 = 6.25 σmax = 2.56
θ104 = 5.01 σmean = 0.4

TABLE III
AVERAGE PATH LENGTH θ

timestamp; if we make the token correspond to an IP address
(4 bytes) and an integer timestamp (2 bytes), it is possible
to get an estimation of the actual traffic generated by the
algorithm. Based on the parameters used during simulations,

S-R θ100 = 1281 σ104 = 0
θ5000 = 1281 σmax = 169.78
θ104 = 1281 σmean = 0.22
|G104 | = 1281

DP-R θ100 = 1280 σ104 = 4.52
θ5000 = 1278.3 σmax = 160.43
θ104 = 1279.15 σmean = 4.1
|G104 | = 1279.15

DI-R θ100 = 1280 σ104 = 4.31
θ5000 = 1278.19 σmax = 161.72
θ104 = 1279.2 σmean = 3.94
|G104 | = 1277.7

S-U θ100 = 1281 σ104 = 1.89
θ5000 = 1280.3 σmax = 109.21
θ104 = 1280.3 σmean = 2.08
|G104 | = 1281

DP-U θ100 = 1280 σ104 = 5.04
θ5000 = 1268.65 σmax = 150.03
θ104 = 1274.05 σmean = 4.47
|G104 | = 1277.45

DI-U θ100 = 1280 σ104 = 4.25
θ5000 = 1266 σmax = 162.1
θ104 = 1272.2 σmean = 4.02
|G104 | = 1276.75

TABLE IV
SIZE OF LARGEST CONNECTED COMPONENT θ

Fig. 7. Network Traffic

we can evaluate the size of each species of ant as:

• Discovery Ant: at most 15 entries in the vector, with at
most 8 tokens per entry, totaling 135 tokens;

• Optimization-Link Ant and Construction-Link Ant: 2
tokens (source and target nodes);

• Unlink Ant: 2 tokens (source and target nodes);
• Ping Ant: 1 token for the source.

According to the value of µ = 0.05, it is possible to
estimate the average size of the Discovery Ant population
at around 64 (=≈ 1281∗0.05) individuals during all simula-
tions. At the beginning, the size of the population is doubled
because connections of nodes to the network (which could
generate new ants) corresponds to the beginning of intervals
ι. The size of other colonies heavily depends on the behavior
of the algorithm. As discovery ants make up for the largest
part of the traffic, there are no significant differences between
dynamic and static scenarios.



Figure 7 shows the evolution of traffic during the simula-
tion. As expected dynamic networks require more bandwidth
due to connection requests sent by incoming nodes, as
well as by recovery procedures executed when nodes left.
Traffic in all reliable scenarios is very similar, with DP-
R having slightly lower bandwidth requirements than DI-
R, because the leaving procedure generates less traffic than
the recovery procedure. It is also interesting to note that
unreliable networks produce significantly more traffic, mostly
because of retransmission of lost data, and display peaks at
regular intervals. These peaks are caused by delays in packet
delivery which result in longer relative lifespans of discovery
ants. Although not visible in the figure, an important part of
the bandwidth is consumed by ping ants, with an average
of 1000 individuals in static scenarios, and 1300 in dynamic
scenarios. In real situations these ants may not be necessary
as that information could be piggybacked on application
traffic (e.g. resource discovery and monitoring queries).

D. Complexity

Although a complete analysis of the complexity of
BLÅTANT-R is not yet available, it is possible to provide
a simple evaluation based on the complexity of the basic
algorithms involved, which gives an upper-bound for the
overall complexity. Each peer has to execute shortest-path
algorithms on a partial graph of the network based on the
information found in the α table. Although the complexity
of these procedures can be as high as O(n2), the size of
n is in fact very small and limited by both the size of α,
and the maximum number of neighbors for each peer. For
the results presented in this paper the maximum size of the
partial graph is 28 ∗ 8 = 228 nodes. To reduce the load
on each peer ni many computations can be avoided when
evaluating new connections, by just ignoring nodes nj ∈ Ni,
and neighbors-of-neighbors (i.e. nk | ∃ nj ∈ Ni∧nk ∈ Nj).
On the other side, while evaluating disconnections, only
the distances between pairs of active neighbors need to be
computed. Simulations runs have confirmed that the overall
time taken by evaluation procedures is negligible.

VI. CONCLUSIONS

This paper presented the BLÅTANT-R algorithm for con-
structing and maintaining a bounded diameter network over-
lay. The topology is optimized according to a user defined
parameter by adding necessary logical links between nodes
and removing redundant connections. The algorithm uses
ant inspired methods to monitor the network and collect
information used by the optimization process; this results
in an adaptive behavior suitable for dynamic networks.
Simulations showed that BLÅTANT-R is able to construct
and maintain a topology with bounded diameters in both
static and dynamic scenarios. Results also proved that the
algorithm is fault tolerant in respect to underlying network
problems such as delivery delays and packet loss. Recovery
mechanisms ensure that the network remains connected even
in the event of node crashing. Nonetheless, simulations also
underlined the fact that proper disconnections procedures

and reliable communication result in significantly lower
communication costs.

Future work will concentrate on the evaluation of effi-
cient search methods exploiting the topology maintained by
BLÅTANT-R. In particular, this algorithm, along with other
swarm inspired methods, will be used to support resource
discovery in a novel grid middleware [21].
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