
Enabling Efficient Information Discovery in a Self-Structured Grid

Amos Brocco∗,1, Apostolos Malatras1, Béat Hirsbrunner1

Pervasive and Artificial Intelligence Research Group, Department of Informatics, University of Fribourg, Boulevard de Pérolles 90,
CH-1700 Fribourg, Switzerland

Abstract

One of the key success factors enabling the deployment of large scale grid systems is the existence of efficient resource
discovery mechanisms. Accordingly, the main issues to be addressed by such a grid information system are those of
scalability and minimal network overhead. In this respect, we propose a solution based on proactive information caching
supported by a self-structured overlay topology. The proposed approach features a fully distributed ant-inspired self-
organized overlay construction that maintains a bounded diameter overlay, and a selective flooding-based discovery
algorithm that exploit local caches to reduce the number of visited nodes. To improve the caching scheme while
retaining minimal bandwidth consumption, cache contents are periodically exchanged between neighboring nodes using
an epidemic replication mechanism that is based on a gossiping algorithm, thus allowing nodes to have a more general
view of the network and its resources. Extensive experimentation provides evidence that the average number of hops
required to efficiently locate resources is limited and that our framework performs well with respect to hit rate and
network overhead.

Key words: Grid Computing, Resource Discovery, Overlay Networks, Collaborative Ant Algorithms

1. Introduction

Sustained by the increasing availability of a large num-
ber of low cost high performance systems and high-speed
network connections, distributed solutions are steadily
emerging as a viable alternative to centralized approaches
to solve complex computing tasks. Although centralized
solutions are simpler to design and manage, they create
a dependency of the whole system on a small number of
machines, exposing a series of drawbacks such as increased
load on the central nodes, and reduced robustness because
of a single point of failure.

Distributed systems can be grouped in different cate-
gories according to their structure or purpose: peer-to-peer
systems, ad-hoc networks, mesh networking, grid systems,
etc. Despite some differences, the common goal driving
the development of distributed systems is the ability to
share local resources with the community, for example
data in peer-to-peer systems or computing resources in
grids. In particular, this paper focuses on resource discov-
ery in computing grids. Grid resources are described by a
resource profile listing the capabilities of the resource ac-
cording to some metrics. Conversely, discovery queries list
the needed capabilities of the requested resource. Provided
that a matching mechanism to compare profiles to queries

∗Corresponding author
Email addresses: amos.brocco@unifr.ch (Amos Brocco),

apostolos.malatras@unifr.ch (Apostolos Malatras),
beat.hirsbrunner@unifr.ch (Béat Hirsbrunner)

is available, the main issue to be addressed is the actual
discovery of these profiles in a distributed environment.

Resource discovery in grid systems typically relies on
a client-server model using centralized directories, where
profiles are being published and incoming queries are be-
ing matched. This approach enables efficient and deter-
ministic search, but requires large and powerful systems
to store all the amount of information generated by the
network. Although these issues do not hinder the inherent
processing capabilities of a distributed computing system,
they could negate some of the typical advantages offered
by fully distributed models such as increased reliability
and robustness. Additionally, if the information about re-
sources changes rapidly, then the quality of resource dis-
covery may be affected negatively, unless frequent updates
are made to the central index.

Tackling the problem from a different perspective, other
approaches realize the need to adopt solutions that ex-
plicitly take into consideration the nature of distributed
systems so as to accommodate the grid resource discov-
ery needs in a more coordinated manner, and take full
advantage of the benefits of distribution. On the down-
side, because in this view all kind of centralized indexes
are to be avoided, distributed mechanisms enabling effi-
cient and effective discovery need to be developed. In this
respect, peer-to-peer architectures are the most prominent
paradigm that addresses grid resource discovery in a fully
distributed manner. In particular, it is possible to recog-
nize two main approaches: structured and unstructured.

Structured solutions propose the construction of topolo-

Preprint submitted to Future Generation Computer Systems January 8, 2010

gies with strict properties that allow deterministic resource
discovery. On these systems, referred to as Distributed
Hashtables (DHT) [1, 2], the overlay network is organized
in such a way so that information can be easily located by
means of keys associated to the underlying network node
identifiers. While achieving satisfactory results in terms of
resource discovery efficiency, there are limitations on the
characterization of indexed resources. Specifically, grid re-
source discovery queries do not typically match to a unique
key, as required by DHT, introducing therefore a degree
of difficulty in locating complex combinations of hardware
and software configurations [3].

To overcome the rigidness of structured solutions, an
alternative approach involves the use of overlay networks
without a fixed topology that can be classified as unstruc-
tured. Unstructured solutions do not have strict rules
about the topology of the network nor about the loca-
tion of resources. Resources can be located by means
of flooding mechanisms, namely first by querying neigh-
bors of the local node and then propagating these queries
progressively throughout the network. Despite their ad-
vantages over structured systems, scalability of unstruc-
tured solutions may be limited by the exponential growth
of flooding-related traffic. To address this problem, more
efficient flooding methods have been subsequently devel-
oped, e.g. selective flooding [4], random walks [5], routing
indices [6], semantic overlays [7, 23], etc.

In general, we consider ensuring fully distributed oper-
ation, limiting network overhead and minimizing response
time, as fundamental requirements for grid resource dis-
covery. In this regard, this paper presents a distributed
grid information system supported by swarm intelligence
for efficient resource discovery using flooding-like proto-
cols. The proposed framework utilizes ant colony algo-
rithms to build, optimize and maintain a self-structured
peer-to-peer overlay network connecting grid nodes both
using a minimal number of links, and ensuring that the
diameter of this overlay network is bounded. We further
augment this framework in terms of resource discovery ef-
ficiency by proactively querying the overlay network with
the purpose of locating nodes with similar capabilities and
storing this information in a local cache for every node,
so as to minimize the amount of queries being propagated
throughout the network to find matching nodes.

The remainder of this paper is structured as follows:
Section 2 discusses related research in the field of re-
source discovery in unstructured overlay networks. Sec-
tion 3 details the self-organized overlay construction algo-
rithm, whereas Section 4 presents our proposed proactive
resource discovery mechanism. The evaluation methodol-
ogy for both algorithms is discussed in Section 5, while re-
sults and their analysis are presented in Section 6. Finally,
Section 7 summarizes the work presented in the paper and
provides some insight on future research directions.

2. Related Work

Improving the efficiency of resource discovery in un-
structured peer-to-peer networks has been the subject of
several research projects. The main goal of these projects
is to reduce the overall traffic by minimizing the total
number of nodes visited by a query. Although many dis-
tributed systems resource discovery mechanisms can be
equally applied to peer-to-peer and grid systems as they
share many principles, a distinction between these systems
is in the definition of the notion of the resource. Whereas
in peer-to-peer systems resources typically refer to files be-
ing shared amongst nodes, in grid systems it is computing
resources that are being shared. In grid systems it is thus
beneficial to collect as many query responses as possible so
as to have a large selection of prospective candidate nodes
to assign grid tasks to, whereas in peer-to-peer systems it
is sufficient to have a small number of successful responses.

An important aspect of the proposed solution is the use
of a self-organized optimized peer-to-peer overlay, in order
to limit the traffic overhead resulting from the resource
discovery process. This goal can be achieved by limiting
the average path length in the overlay, as well as keep-
ing a minimal number of links between nodes. A similar
approach is followed by Umm [24], by distinguinshing be-
tween overlay maintainance and efficient information dis-
semination. In this respect, connections between nodes
are optimized in order to reduce latency and to increase
available bandwidth. Overlays with bounded diameter can
be obtained in a fully distributed way by approximating a
random or small-world topology, as shown by Newscast

[25]. An example of a communication platform exploiting
an optimized overlay is the Saxons project [26], where an
overlay with both low latency and high bandwidth paths
is constructed in order to provide efficient multicast de-
livery. A further example of self-organization is P-Grid

[27], which exploits a dynamic DHT-like structure to in-
dex information and ensure fair replication of data across
the nodes.

Efficiency of resource discovery in unstructured net-
works has been thoroughly analyzed in [8]. In general,
we can identify two main categories of approaches aimed
at optimizing the resource discovery process: solutions
that do not consider the semantic of shared resources, and
semantic-aware solutions.

The former category spans from expanding ring or ran-
dom walks [5], to probabilistic flooding [9], teeming [10],
or replication [11], etc. The underlying concept of these
approaches is to reduce the number of query forwardings
by limiting the spread of a query (for example, by setting
small time-to-live values or by forwarding the query only
to a limited random subset of the nodes) or by replicat-
ing information across the network. Different replication
strategies may be adopted, such as path replication or uni-
form distribution. Although these methods effectively re-
duce the network load, we argue that a semantic-aware
solution can be even more efficient.

2

Semantic-aware solutions exploit the information con-
cerning both the resources and the queries in order to drive
the request toward nodes that are more likely to fulfill it.
Example solutions include [12, 13], which suggest using
local indices to direct search queries toward nodes that
are more likely to satisfy them. The forwarding policy is
normally based on satisfaction indices that are evaluated
based on past experiences, namely successful query re-
sponses. Upon this model, different propagation strategies
can be implemented, as suggested in [14]. Following sim-
ilar ideas, [15] describes a grid information service based
on peer-to-peer technologies that uses routing indices to
direct queries toward the closest known node that might
fulfill the request. The same project also makes use of a
super-peer topology, with nodes belonging to the same vir-
tual organization connecting to one or more super-peers,
thus further reducing the generated traffic.

An interesting solution is proposed by Antares [16],
where a distributed swarm intelligence algorithm is used
to cluster node references in a grid. Antares works on
the principle of disseminating information about available
resources across the network and uses clustering to reduce
the traffic overhead. This solution exploits semantic in-
formation about resources to enhance proximity between
nodes with similar profiles. When a query reaches a match-
ing node, it is possible to find additional hits at a reduced
cost.

Building on some of the concepts of the previously pre-
sented approaches, our framework follows a twofold ap-
proach by first optimizing the overlay network and then
by exploiting local indices to improve resource discovery
efficiency. In contrast to clustering solutions (such as
Antares), local caches do not rely on vicinity between
nodes in the overlay, and thus are more suited for self-
organized overlays that cannot guarantee a stable topol-
ogy.

3. Overlay Management

The overlay management provides connectivity between
nodes upon an optimized overlay with minimal average
path length, maintained by a self-organized collaborative
algorithm named Bl̊atAnt-S. Bl̊atAnt-S improves our
previous algorithm Bl̊atAnt-R [17] by simplifying its op-
eration and reducing the overall network traffic, while re-
taining its quality behavior. A brief discussion of the dif-
ferences between these two versions of the algorithm is
provided at the end of this section. The algorithm de-
pends on different species of ant-like software agents that
move across the network and optimize its topology both by
adding new logical links required to reduce the diameter,
and also by removing existing links that do not contribute
to the solution. The behavior of these mobile agents is
inspired by swarm intelligence [18]. This section provides
an overview of the Bl̊atAnt-S algorithm.

3.1. Peer Logic

The proposed overlay management algorithm is fully
distributed across network peers. Each peer ni contributes
to the optimization of the network by rearranging local
links according to two simple rules for connections and
disconnections, which depend both on partial local view
of the overlay and a user-defined optimization constraint
parameter D.

Connection Rule. Consider two non-connected peers
ni and nj in an overlay network G, and dG(ni, nj) the
minimal routing distance from ni to nj in G. A new
logical connection between ni and nj is created if:

d′G(ni, nj) ≥ 2D − 1 (1)

Where d′G(x, y) is defined as min(dG(x, y), dG(y, x)).

The Connection Rule triggers the creation of new
logical links, which ultimately reduce the diameter of the
network to values < 2D − 1. Conversely, a Disconnection
Rule is used to remove redundant links that are not
necessary to bound the diameter.

Disconnection Rule. Consider two connected peers ni and
nj in an overlay network G, i 6= j. Let G′ ← G \ {ni}
and Ni be the set of all nodes adjacent to ni. Peer ni is
disconnected from nj ∈ Ni if:

∃ nk ∈ Ni, k 6= j, |Nj | > |Nk| : d∗G′(nj , nk)+1 ≤ D(2)

Where d∗G(x, y) is defined as max(dG(x, y), dG(y, x)).
With a global knowledge of the network, even a dis-

tributed application of both rules leads to an optimized
overlay with diameter d, D ≤ d < 2D − 1. In order to
discover other peers matching these rules, each peer ni

maintains a partial view of the network in a fixed-size ta-
ble αi, which retains neighborhood information. This in-
formation is continuously updated using the data coming
from other nodes, and is used to evaluate the need for new
links between two nodes, or the redundancy of existing
connections. It should be noted that in fully distributed
highly dynamic scenarios, diameter boundaries might only
be approximated: according to our experiments, distances
close to the 2D − 1 boundary cannot be easily observed;
nonetheless, the average path length will still converge to
a value around 2D − 1. A more detailed review of the
aforementioned rules along with proofs of convergence is
available in [17].

Each peer ni maintains a set of identifiers of peers inside
its neighborhood set Ni. Accordingly, two nodes ni and
nj are considered as connected when both ni ∈ Nj and
nj ∈ Ni. In order to avoid hubs, the maximum size for the
neighborhood set is limited, thus forcing the algorithm to
optimize the network by re-arranging existing links instead
of creating a large number of connections to all but a small
number of peers. To support fault tolerance, each time Ni

gets updated, all neighbors nk ∈ Ni get a notification from
ni, and update their respective αk table.

3

3.2. Ant Agents

Most of the activities required for the management of
the overlay are carried out by ant-like mobile agents. We
distinguish between different classes of ants, or ant species,
depending on the assigned task.

Discovery Ants are used to collect information about
the network and to update the α table on each peer. Each
agent wanders randomly across the network carrying a
fixed-size circular buffer where identifiers of visited peers
are stored. Discovery Ants have a limited lifespan, and
are respawned by nodes at regular intervals according to
a defined per-node birth probability.

Construction-Link Ants are sent by a peer nj want-
ing to connect to the overlay. If the recipient has already
reached the maximum number of allowed links, the ant is
forwarded to the neighbor with the lowest degree. When
some peer ni accepts a connection request, the requesting
peer nj is added to the neighborhood Ni set and the ant
is sent back to nj, where ni is conversely added to Nj .

Optimization-Link Ants are used to create links be-
tween nodes according to the Connection Rule. Similarly
to construction ants, a peer nj wanting to connect to a
peer ni sends an ant to the latter, but in contrast to what
occurs with other species, ni cannot forward the request
to its neighbors, but can just accept or reject it.

Unlink Ants remove existing links between peers either
because the Disconnection Rule applies, or because one
of the peers wants to leave the network. An Unlink Ant
travels to its target peer and removes all information about
the source peer from the local α table and neighborhood
set Ni.

Update Neighbors Ants are generated by a node ni

when its neighborhood set Ni changes. These ants travel
to every neighbor nj ∈ Ni and update the information
about ni in the respective αj tables.

Ping Ants are periodically exchanged between nodes
to keep connections alive in low traffic situations.

3.3. Rules Evaluation.

Discovery Ants relay the collected information to each
visited node. This information can be represented as a vec-
tor v of identifiers of nodes as visited by the ant. A node ni

receiving a vector v updates its αi table, and then proceeds
by determining if the Disconnection Rule applies. The in-
formation vector v is traversed and the distance dv between
each pair of identifiers nj , nz with z 6= j ∧ nj, nz ∈ Ni is
determined (computed as the absolute indices difference).
If dv < D, a disconnection procedure is started by send-
ing an Unlink Ant to the neighbor (either nj or nz) with
the greatest degree (size of the neighborhood set). Con-
versely, to evaluate the Connection Rule, the distances of
each node nz in the local cache table are processed, and a
connection procedure is started with the node at the great-
est distance ≥ 2D− 1. Accordingly, an Optimization-Link
Ant is sent to the selected node. To avoid sending multi-
ple ants to the same node, if a connection procedure has

already been started, the same node cannot be selected
again within a pre-defined timeframe.

3.4. Pheromone Trails

Communication between real ants is achieved using a
stigmergic (i.e. indirect) mechanism, which involves leav-
ing chemical pheromone trails in the environment. These
chemical traces can be sensed by other individuals in the
colony and their concentration indicates the desirability
of a given path. With time, unless new chemical is left
by an insect of the colony, the concentration of the trail
completely evaporates. Evaporation provides the benefit
of seamlessly resolving errors and overcoming bad system
decisions, which are less likely to be reinforced with time.
In Bl̊atAnt-S, we use pheromone trails to ensure fair
coverage of the network by Discovery Ants, and by sim-
ulating evaporation, trails are also used to keep track of
whether a neighbor is still alive.

We simulate trails by defining a numerical value for each
connection. When ant agents move between peers, they
leave pheromone trails on both the starting and the des-
tination node. Pheromone trail τ is reinforced according
to the formula τ ← 1. Conversely, evaporation updates
the concentration of the trail as τ ← τ ∗ ψ with ψ < 1.
On each node ni, and for each neighbor nj , a pheromone
trail γ[nj] is reinforced by ants traveling from ni to nj .
Discovery ants leaving peer ni will then less preferably
choose nj , and instead follow a path to a neighbor with a
corresponding trail of lower concentration.

For each neighbor nj in Ni, a β[ni] trail is also rein-
forced by ants traveling from nj to ni. By monitoring the
concentration of such trails, nodes can detect neighbors’
abrupt disconnections, i.e. crashes. When a trail com-
pletely evaporates, the corresponding neighbor is assumed
to have left the network and subsequently a recovery proce-
dure is started. Because the network traffic alone may not
guarantee that pheromone trails are properly reinforced, a
mechanism to avoid complete evaporation is required. For
this purpose, Ping Ants may be periodically exchanged be-
tween nodes. In particular, ni node will send a Ping Ant
to its neighbor nj as soon as pheromone concentration on
trail γi[nj] falls under a predefined threshold. This will
reinforce both γi[nj] and βj [ni].

3.5. Recovery Procedure

When a node ni leaves the network, its neighbors must
rearrange their connections in order to avoid partitioning.
If ni leaves the network properly, it can initiate the re-
covery procedure by itself. Conversely, if ni unexpectedly
quits the network (for example, because it crashed), all
of its neighbors will start the recovery procedure as soon
as the disappearance of ni is detected (i.e. complete β

pheromone evaporation).
The recovery procedure consists in sending

Construction-Link ants to other known neighbors of
ni in order to re-establish proper connectivity among

4

Figure 1: Recovery after node ni leaves the network

them. In particular, ant agents try to connect all nodes
in a ring formation, which requires the minimal number
of links to ensure proper connectivity. Figure 1 depicts an
example situation where node ni leaves the network (a)
and a recovery procedure is executed (b).

3.6. Comparison to Bl̊atAnt-R

In contrast to Bl̊atAnt-S, the former Bl̊atAnt-R

version uses a more precise local evaluation of distances.
In particular, instead of computing distance estimations
from the relative positions of identifiers in v, a shortest-
path algorithm [19] is used. Accordingly, more information
needs to be collected by Discovery Ants, in order to enable
the construction of a partial graph based on local data in
the α table. Information vectors thus include not only the
identifier of the node being visited, but also the identifiers
of its neighbors. This evidently results in a bigger pay-
load, which increases the overall traffic generated by the
algorithm, as well as a greater computational complexity
for the evaluation of distances.

4. Proactive Resource Discovery

The network overlay maintained by Bl̊atAnt-S en-
ables optimized communication by providing bounded
length paths between peers and by limiting the number
of redundant paths between them. On one side, a small
number of redundant links lowers the overhead created by
multicast traffic. On the other side by actively bound-
ing the diameter of the overlay, it is possible to fine-tune
resource discovery query TTL (Time-To-Live, as hops in
the overlay), thus limiting the spread of messages over the
network. Meanwhile, obtaining satisfactory resource dis-
covery hit rates still requires visiting a large number of
nodes. In this respect, the aim of the proposed proactive
resource discovery approach is to increase the hit rate by
exploiting cached information in order to minimize net-
work overhead.

4.1. Resource Discovery

Each node in the grid shares a set of its resources with
other nodes, which can be referred to as the resource profile
of the node. A resource profile can be viewed as a collec-
tion of tuples, expressed as a vector, referring to different

resource aspects (i.e. CPU architecture, amount of mem-
ory, etc.) and their availability. We can distinguish be-
tween static and dynamic profiles: the former only consid-
ers the maximum theoretical availability of each resource,
whereas the latter also considers the actual availability of
each resource, which depends on the status of the node,
the current active tasks (i.e applications running), and the
scheduling policy. When users submit jobs to nodes that
do not have the necessary resources to carry them out, re-
source discovery procedures are initiated. Resource discov-
ery is the process of finding peers whose dynamic profiles
match a given search query.

Resource discovery is performed using a limited and se-
lective flooding algorithm. Limited flooding implies that
nodes keep track of received queries, and avoid forwarding
queries that have already been processed. Selective flood-
ing means that, at each step, the query is forwarded only
to a subset of all neighbors. In our approach, the subset is
constructed by uniformly sampling the neighborhood set.
We consider the query as successful when at least one node
matching the query is found; conversely, each node found
counts as a hit. Accordingly, the hit rate measures the
percentage of successfully discovered resources out of all
matching ones.

With our proactive caching approach we aim at exploit-
ing the fact that similar nodes are more likely to match
the same query. Unfortunately, there are many situations
where an exact match might not be possible: it is thus
necessary to determine resource profiles that, although dif-
ferent from the one required by the query, may still fulfill
the task.

4.2. Peer Similarity

In order to determine if two peers share some similarities
and are thus likely to match the same query we compare
their resource profiles. In particular, given two resource
profiles expressed as vectors, we use a cosine similarity
measure.

Similarity Function Λ. Given two grid nodes ni and nj ,
their resource profile vectors pi and pj , a suitable scalar
product operation, and a norm ‖.‖, we consider a similarity
function Λ(pi, pj) ∈ [0, 1], such that

Λ(pi, pj) =

pi·pj

||pi||||pj||
if

pi·pj

||pi||||pj||
> 0

0 otherwise

The scalar product and the norm have to be defined such
that the profiles are equivalent iff Λ(pi, pj) = 1, and sim-
ilar iff this value is close to 1 according to a user-defined
threshold (1% in our experiments).

4.3. Similar Peers Cache

Each node keeps a cache table of size csize storing identi-
fiers and timestamps of other nodes with a similar profile.
In contrast to resource discovery, for caching purposes we

5

only consider static resource profiles. This cache is up-
dated at regular intervals by starting proactive resource
discovery queries to search for other nodes in the network
having a similar profile. Results from proactive queries in-
clude both the identifier and the timestamp of the match-
ing node. During proactive queries, each hit generates a
reply message back to the originating node, in order to
update its peer cache.

Similarly to routing indices [12], the collection of all peer
caches can be viewed as a second-level overlay, where each
node’s neighborhood is composed of peers with similar re-
source profiles. Resource discovery is therefore enhanced
because a pool of potential matching resources is immedi-
ately available.

4.4. Cache Merging

Maintaining up to date cache information through
proactive resource discovery queries may lead to high net-
work overhead. We thus introduce a cache merging mech-
anism that enables nodes to share their cache contents
with peers having similar profiles. This avoids flooding
the network with proactive queries, in favor of a pairwise
exchange of a small number of node identifiers.

The process itself is inspired by the Newscast [25] gos-
siping algorithm. At regular intervals, each node randomly
chooses a peer from within its cache contents and initiates
a merging procedure. The initiating peer requests the con-
tent of the remote cache, merges them with the local cache,
and retains at most the csize − 1 entries with the highest
timestamp (i.e. the most recent information). Both the
initiating node and the remote node will then replace their
own caches with the resulting set. Finally, the initiating
node will add the remote peer identifier, along with an
updated timestamp to its cache. Conversely, the remote
peer will add the initiating node’s identifier and updated
timestamp to its cache.

4.5. Enhanced Resource Discovery

The peer cache itself is exploited by non-proactive
searches to enhance the hit rate: when a matching node
is found instead of stopping the search, the query jumps
to the node cache and continues for an additional num-
ber of steps. In this way, there is a high probability of
reaching additional hits because of the way the cache has
been constructed. Similarly to Bl̊atAnt-S ants, resource
discovery queries also contribute in reinforcing β and γ

pheromone trails as they propagate across the network.

5. Evaluation

A twofold evaluation of the proposed approach was con-
ducted, focusing on both the performance of the overlay
management algorithm as well as the efficiency of the en-
hanced proactive resource discovery mechanism. In partic-
ular, concerning the overlay we concentrated on the feasi-
bility of maintaining a connected overlay with a bounded

diameter even in dynamic topology scenarios. Regarding
the assessment of the proposed resource discovery scheme,
hit rate improvements as well as impact on bandwidth con-
sumption were studied. Furthermore, a sensitivity analy-
sis of different parameters of the proactive caching process
was performed, in order to yield their influence on the
aforementioned assessment metrics.

It should be noted that this work is an extension of
our previous research documented in [21]; specifically, fine
tuning optimizations were implemented in the proactive
caching resource discovery protocol, enabling better over-
all performance, while additional scenarios were also con-
sidered.

5.1. Overlay Construction

To bootstrap the overlay, an initial random lattice con-
sisting of 10 nodes was used; these nodes also form the pool
of well-known connection points where any node wanting
to join addresses its request to. At the beginning of the
simulation a number of additional nodes is added, up to
a total of 1281 nodes. The optimization parameter D for
all scenarios is set to 5, thus the expected average path
length is around 2D − 1 = 9.

For evaluation purposes, tests were conducted in a dis-
crete time simulator, with timing computed by means of
iterations. It is nonetheless important to highlight the fact
that execution of the algorithm remains fully distributed.
At each iteration the whole population of ants may travel
at most one hop in the overlay. Table 1 lists the parame-
ters used by Bl̊atAnt-S during all simulations. Based on
extensive experimentation on the overlay management al-
gorithm [17], we argue that the presented choice of values
represents an optimal configuration that provides satisfac-
tory results. It should be nevertheless noted that different
sets of values do not significantly affect the qualitative be-
havior of the presented results. Pheromone trails evapora-
tion is simulated by updating their concentration at each
iteration.

To simulate a dynamic network behavior, a new node
joins the overlay with an average period of 50 iterations.
Conversely, each 100 iterations a node leaves the network
and one crashes (i.e. leaves the network abruptly). Con-
sequently, the size of the network remains stable. In ad-
dition, nodes quitting the network overlay do not subse-
quently rejoin it.

To assess the impact of a different overlay management
algorithm on the performance of the proposed caching
mechanism, we also experimented with a topology con-
structed using Newscast instead of Bl̊atAnt-S. For this
experiment, each node maintained a Newscast gossiping
cache table of 20 entries, exchanged every 1000 iterations.

5.2. Resource Discovery Scenarios

Simulation of resource discovery is performed by ran-
domly choosing both a starting node and a search pro-
file. For evaluation purposes we only considered static

6

resources profiles. A set of 10 simulation runs of 75000 it-
erations each were evaluated: a set of 10 search queries is
started every 25 iterations, beginning at iteration 500, re-
sulting in 29800 queries per run. Different scenarios were
simulated with varying values for the parameters of our
resource discovery algorithm, as listed in Table 2. In par-
ticular, the considered parameters are noted as follows:

- TTL: resource discovery query time-to-live (hops);
- FW: selective forwarding sample size;
- M-int: cache merge interval;
- P-int: proactive queries interval;
- C-TTL: TTL while traveling within the cache;
- C-FW: FW within the cache;
- P-TTL: proactive queries TTL;
- P-FW: proactive queries FW;
- C-Size: cache size (maximum entries).

Each node is assigned a profile according to a uniform
distribution, such that each profile is shared on average by
27 nodes. Accordingly, in all scenarios using the proactive
caching, the cache size was set to 5 entries. The average
path length in the overlay is 9, nonetheless the query TTL
of all scenarios has been set to 5 in order to highlight the
benefits of the cache mechanism while retaining a minimal
traffic overhead.

5.3. Traffic Evaluation

In order to evaluate the traffic generated by our overlay
management algorithm, we estimated the typical size of
ant-like agents as follows:

- Discovery: 420 bytes plus 24 bytes/visited node;
- Construction-link: 420 bytes plus 24 bytes for the ini-
tiating node identifier;
- Optimization-link: 420 bytes;
- Unlink: 420 bytes;
- Update Neighbors: 420 bytes plus 24 bytes/neighbor.
- Ping: 420 bytes;

Accordingly, for the resource discovery task, we consid-
ered the following estimations:

- resource discovery queries: 1024 bytes;
- resource discovery query replies: 456 bytes;
- cache merge: 420 bytes plus 24 bytes/cache entry;
- ping: 352 bytes (ICMPv6).

These estimations include both the size of an IPv6
header (288 bytes), a UDP header (128 bytes), as well
as a 4 bytes packet type identifier. For visited nodes, the

Optimization parameter D 5
α table size 40
max(|Ni|) ∀i 8
Discovery Ant lifespan 50
Discovery Ant respawn interval 150
Discovery Ant birth probability 0.01
Discovery Ant vector length 20
Pheromone decay (for γ and β) ψ 0.991

Table 1: Overlay Construction Parameters

T
T

L

F
W

M
-i
n
t

P
-i
n
t

C
-T

T
L

C
-F

W

P
-T

T
L

P
-F

W

C
-S

iz
e

A1 5 3 - - - - - - -
A2 5 4 - - - - - - -
A3 5 6 - - - - - - -
B1 5 3 2500 25000 3 3 4 3 5
B2 5 4 2500 25000 3 3 4 3 5
B3 5 6 2500 25000 3 3 4 3 5
C1 5 4 2500 25000 1 5 8 3 5
C2 5 4 2500 25000 2 5 8 3 5
C3 5 4 2500 25000 5 2 8 3 5
D1 5 4 10000 25000 3 3 8 3 5
D2 5 4 25000 25000 3 3 8 3 5
E1 5 4 2500 12500 3 3 8 3 5
E2 5 4 2500 37500 3 3 8 3 5
E3 5 4 2500 50000 3 3 8 3 5
F1 5 4 2500 25000 3 3 5 3 5
F2 5 4 2500 25000 3 3 6 3 5
G1 5 4 2500 25000 3 3 5 3 10
G2 5 4 2500 25000 3 3 5 3 20

Table 2: Evaluation Scenarios

assumed 24 bytes comprise 16 bytes for the IPv6 address,
4 bytes for the port number, and 4 bytes for the remote
timestamp. The obtained traffic results are based on an
average cost over the total number of queries, and include
the overlay management, the proactive caching task (if
applicable), and resource discovery. The bandwidth con-
sumed by the overlay and caching does not depend on the
resource discovery activity, and it should thus be consid-
ered as a fixed cost distributed among all queries.

6. Results

Building on the aforementioned evaluation scenarios and
having detailed the considered parameters, we present and
discuss here the corresponding results. The first set of re-
sults focuses on the performance of the overlay manage-
ment algorithm, while the second one analyzes both the
efficiency of the proposed resource discovery approach and
the sensitivity of the caching algorithm to variation of pa-
rameters.

6.1. Overlay Management

We considered three different performance metrics to
assess the proper operation and the efficiency of the over-
lay management algorithm: resulting average path length
(AVPL), diameter and generated traffic. We compare the
performance of the original Bl̊atAnt-R [17] algorithm
with the improved Bl̊atAnt-S version by means of sim-
ulations. The latter algorithm has also been used for the
resource discovery evaluation. Traffic results refer to the
overlay management tasks only, and have been measured
through simulations without resource discovery.

7

Figure 2: Average Path Length and Diameter

As shown in Figure 2, Bl̊atAnt-S obtains better re-
sults than Bl̊atAnt-R, both in diameter, and average
path convergence with values close to 11 and 2D − 1 = 9
respectively. The network bootstrap phase reflects on both
the diameter and the average path length values, which in-
crease up until around iteration 1000. As soon as all nodes
are connected to the network, effects of the optimization
become visible, and distances in the overlay quickly de-
crease.

Figure 3: Overlay Management Traffic

As expected the improved algorithm consumes less
bandwidth, with approximately 5 KB less traffic per it-
eration, as shown in Figure 3. It is worth noting that
the generated traffic refers to the entire overlay, thus it
averages to approximately 18 bytes per node per itera-
tion for Bl̊atAnt-S. Although not shown in the figures,
we also measured the total number of links in the result-
ing networks, namely 7400 for Bl̊atAnt-R, and 7000 for
Bl̊atAnt-S. These results further confirm that overlays
maintained by the improved algorithm are more optimized
and contain less redundant links. While not illustrated, it
has to be noted that during all simulation runs the network
always remained fully connected, proving that the imple-
mented recovery strategy is able to deal with the consid-
ered abrupt and proper disconnections rates.

6.2. Resource Discovery

Evaluation of the resource discovery efficiency has been
conducted by means of the following assessment criteria:
success rate (Figure 4), hit rate (Figure 5), cost per query
(Figure 6, detailed in Figure 7), and cost per hit (Fig-
ure 8). Graphs concerning communication costs illustrate
the effective resource discovery cost as well as the overlay
and the proactive caching management costs. We consider
a resource discovery query as being successful if at least
one matching result is found, which also implies a hit rate
greater than 0. Furthermore, each distinct matching node
counts as a hit for the query. In the following we discuss
the respective results for the diverse scenarios listed in Ta-
ble 2.

Figure 4: Search Success Rate

Without cache (A1,A2,A3). In order to have a baseline
for comparison with our proposed proactive resource dis-
covery mechanism, we experimented with different scenar-
ios using only the limited and selective forwarding strat-
egy. Furthermore, when a matching node is reached, the
query is not further forwarded. As expected, the wider the
spreading of the query, the more hits are found and the
more traffic is generated. Although not shown, the cost of
overlay management in the first scenario (A1) makes for
a noticeably larger part of the overall traffic (an average
of 24 KiB in A1, versus 14 KiB in A2/A3). The reason
behind this behavior is the fact that a larger number of
Ping Ants are exchanged between nodes because of the
reduced application traffic (i.e. resource discovery). We
also considered additional scenarios where forwarding was
not stopped once a match was found, which did not how-
ever produce significant variations.

With cache (B1,B2,B3). The proactive caching strategy
performs much better than the traditional approach. With
only a slight increase in the average cost per query, it is
possible to obtain a noteworthy improvement of the hit
rate. In particular, as shown in Figure 5, the hit rate

8

is more than doubled in B1 in comparison to A1. As a
consequence, the cost per hit in B1,B2,B3 is significantly
reduced. Evidently the success rate remains unchanged
in respect to the previous results, because cache informa-
tion is exploited only once a match is found, and therefore
only contributes to an increase of the hit rate. Scenario
B1 shows the same behavior as A1, with respect to the
overlay management traffic. It is also worth noting that
B1 achieves almost the same hit rate as A2 while pro-
ducing significantly less traffic. After having assessed the

Figure 5: Search Hit Rate

improvements derived by our proactive caching approach,
we perform a sensitivity analysis of the parameters affect-
ing the caching behavior. In the following analysis we use
scenario B2 as a baseline for comparison, being the most
representative one.

Cache hops influence (C1,C2,C3). These scenarios are
used to evaluate the impact of different cache navigation
strategies (i.e. different C-TTL and C-FW). From the
analysis of the results it is clear that no particular strategy
significantly outperforms the others. Scenario C2 shows a
slight improvement of the performance over B2 by reduc-
ing the cache TTL and increasing the cache FW. This re-
sult enables us to claim that similar nodes remain close to
the node in the cache overlay, thus letting the query travel
further in the cache does not provide any advantage.

Merge frequency influence (D1,D2). Cache merges pro-
mote spreading and sharing of information across the
nodes as well as its replication. Additionally, merges also
help removing old entries from the cache, thus avoiding
referencing missing nodes that have already left the net-
work. Decreasing the merge frequency lowers the amount
of valuable information in the cache, which results in less
hits being reported.

Proactive queries frequency influence (E1,E2,E3). Proac-
tive queries are the primary mechanism used to fill the
cache. As expected, the more frequent the proactive

Figure 6: Cost per Query

Figure 7: Cost per Query (detail)

queries are spawned on the network, the better the in-
formation in the cache is. In particular, scenario E1 real-
izes the best hit rate (56%) with the highest percentage of
hits found in the cache (43%). Clearly, a counter-effect of
higher frequencies is an increased cost affecting each query.

Proactive queries spreading (F1,F2). This result set con-
cerns experiments with varying forwarding limits for
proactive resource discovery queries. Obviously, if proac-
tive queries travel deeper in the network, more hits are
found at the expense of more traffic. Nonetheless, by com-
paring B2 and F2 (at a cost of 13 KiB and 98 KiB per query
for proactive caching respectively), we can argue that the
small benefits of an increased proactive query TTL do not
compensate for the additional bandwidth consumption.

Cache size (G1,G2). The last result set concerns exper-
iments with varying cache sizes. It is possible to notice
that bigger caches improve the hit rate: from 53% in B2
with 5 cache entries, to 56% in G1 with 10, and 53% in G2
with 20. It is possible to notice a small regression from G1

9

to G2, because a large cache bears the risk of retaining a
number of dangling node references.

Figure 8: Cost per Hit

Overlay algorithm influence. The Newscast scenario
replicates the same resource discovery settings as the base-
line B2. During the simulations, the observed average path
length was between 5 and 6, whereas the diameter was ap-
proximately 10. These values are lower than the ones reg-
istered for Bl̊atAnt-S; nonetheless the different overlay
management algorithm only slightly influenced the success
rate, which dropped to 95%, and the hit rate, which re-
mained at 53%. However, it is interesting to note that
the contribution of the cache mechanism to the hit rate
accounts for 55% of the overall results.

7. Conclusions

This paper presented an efficient resource discovery
mechanism using proactive information caching supported
by a gossiping protocol on a self-structured grid overlay.
Regarding grid resource discovery, our driving motivation
has been to achieve satisfactory hit rate results without im-
posing significant network overhead. The proposed scheme
exploits a flooding-based protocol supported by proactive
information caching. Caches are maintained by period-
ically executing proactive resource discovery in order to
retrieve identifiers of other nodes with similar resource pro-
files. To further improve the performance of our system
while limiting the network bandwidth consumption, we
incorporated in our approach a gossip-based information
spreading protocol that enables cache information shar-
ing between nodes. We evaluated the aforementioned ap-
proach through extensive experimentation and assessed its
merits compared to traditional flooding methods. In par-
ticular, we have been able to realize improvements in the
hit rate with little impact on the generated traffic.

Concerning the grid overlay, we introduced a self-
structured architecture maintained using a fully dis-
tributed ant-based algorithm, called Bl̊atAnt-S. The

constructed topology ensures bounded average path length
with minimal per-node degree and a minimal number of
redundant links. Furthermore, we compared the behav-
ior of the algorithm with its previous version, namely
Bl̊atAnt-R, and established its improved performance
both in respect of the quality of the generated overlay,
and concerning network bandwidth requirements.

Compared to our original work presented in [21], we
expanded our field of experimentation by including fur-
ther evaluation scenarios, while in parallel fine-tuning the
operation of the algorithm. It is noteworthy to mention
that the proposed proactive caching mechanism is inde-
pendent of the overlay management algorithm, and can
thus be coupled with other overlay construction protocols.
In this respect, an evaluation exploiting different network
topologies would be of great interest. A first step towards
the latter was the experiment with Newscast. Future
research will focus on adaptive strategies to control the
proactive caching parameters, such as querying and merg-
ing intervals, according to monitored network conditions.
Furthermore, a different application domain of the pro-
posed framework that we plan to engage ourselves with is
that of load balancing on grids. Although similar in prin-
ciple to the problem tackled in this paper, different and
more tailored solutions could be developed. This work is
being developed in the context of the SmartGrid project
[22], which aims at exploiting collaborative and swarm in-
telligence algorithms in a grid management middleware.

8. Acknowledgments

This research has been carried out thanks to the finan-
cial support of the Swiss Hasler Foundation in the frame-
work of the “ManCom Initiative”, project Nr. 2122.

References

[1] Ion Stoica, Robert Morris, David Karger, Frans M. Kaashoek,
and Hari Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. In SIGCOMM ’01: Confer-
ence on Applications, technologies, architectures, and protocols
for computer communications, volume 31, pages 149–160, New
York, USA, October 2001. ACM Press.

[2] Antony Rowstron and Peter Druschel. Pastry: Scalable, decen-
tralized object location, and routing for large-scale peer-to-peer
systems. Lecture Notes in Computer Science, 2218, 2001.

[3] M. Castro, M. Costa, and A. Rowstron. Debunking some myths
about structured and unstructured overlays. In 2nd USENIX
Symposium on Networked Systems Design and Implementation
(NSDI ’05), Boston, MA, May 2005.

[4] S. Arunkumar and R. S. Panwar. Efficient broadcast using se-
lective flooding. In INFOCOM, pages 2060–2067, 1992.

[5] Qin Lv, Pei Cao, Edith Cohen, Kai Li, and Scott Shenker.
Search and replication in unstructured peer-to-peer networks.
In ICS ’02: 16th Int. Conf. on Supercomputing, pages 84–95.
ACM, 2002.

[6] A. Crespo and H. Garcia-Molina. Routing indices for peer-to-
peer systems. 22nd IEEE Int. Conf. on Distributed Computing
Systems, pages 23–32, 2002.

[7] Arturo Crespo and Hector G. Molina. Semantic overlay net-
works for p2p systems. Technical report, Stanford University,
2002.

10

[8] Saurabh Tewari and Leonard Kleinrock. Analysis of search and
replication in unstructured peer-to-peer networks. In SIGMET-
RICS ’05: ACM SIGMETRICS Int. Conf. on Measurement
and modeling of computer systems, volume 33, pages 404–405,
New York, NY, USA, June 2005. ACM Press.

[9] Vana Kalogeraki, Dimitrios Gunopulos, and D. Zeinalipour-
Yazti. A local search mechanism for peer-to-peer networks. In
CIKM ’02: 11th Int. Conf. on Information and knowledge man-
agement, pages 300–307, New York, USA, 2002. ACM.

[10] Vassilios V. Dimakopoulos and Evaggelia Pitoura. On the per-
formance of flooding-based resource discovery. IEEE Trans.
Parallel Distrib. Syst., 17(11):1242–1252, 2006.

[11] Edith Cohen and Scott Shenker. Replication strategies in un-
structured peer-to-peer networks. SIGCOMM Comput. Com-
mun. Rev., 32(4):177–190, 2002.

[12] Beverly Yang and Hector Garcia-Molina. Improving search in
peer-to-peer networks. In 22nd Int. Conf. on Distributed Com-
puting Systems (ICDCS’02), pages 5–13. IEEE, 2002.

[13] Vicent Cholvi and Pascal Felber. Efficient search in unstruc-
tured peer-to-peer networks. In European Transactions on
Telecommunications: Special Issue on P2P Networking and
P2P Services, page 2004, 2004.

[14] Adriana Iamnitchi and Ian Foster. A peer-to-peer approach to
resource location in grid environments. Grid resource manage-
ment: state of the art and future trends, pages 413–429, 2004.

[15] Diego Puppin, Stefano Moncelli, Ranieri Baraglia, Nicola Tonel-
lotto, and Fabrizio Silvestri. A grid information service based on
peer-to-peer. In Jos C. Cunha and Pedro D. Medeiros, editors,
Euro-Par, volume 3648 of Lecture Notes in Computer Science,
pages 454–464. Springer, 2005.

[16] Agostino Forestiero, Carlo Mastroianni, and Giandomenico
Spezzano. Antares: an ant-inspired p2p information system for
a self-structured grid. In BIONETICS 2007 - 2nd Int. Conf. on
Bio-Inspired Models of Network, Information, and Computing
Systems, Budapest, Hungary, December 2007.

[17] Amos Brocco, Fulvio Frapolli, and Béat Hirsbrunner. Bounded
diameter overlay construction: A self organized approach. In
IEEE Swarm Intelligence Symposium. IEEE, April 2009.

[18] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm intelligence:
from natural to artificial systems. Oxford University Press, Inc.,
New York, NY, USA, 1999.

[19] Edsger W. Dijkstra. A note on two problems in connection with
graphs. Numerische Mathematik, 1:269–271, 1959.

[25] Márk Jelasity and Maarten van Steen. Large-scale newscast
computing on the internet. Technical Report IR-503, Vrije Uni-
versiteit, Amsterdam, October 2002.

[21] Amos Brocco, Apostolos Malatras, and Béat Hirsbrunner.
Proactive information caching for efficient resource discovery in
a self-structured grid. In Workshop on Bio-Inspired Algorithms
for Distributed Systems. ICAC 2009, ACM, June 2009.

[22] Ye Huang, Amos Brocco, Béat Hirsbrunner, Michèle Courant,
and Pierre Kuonen. Smartgrid: A fully decentralized grid
scheduling framework supported by swarm intelligence. In 7th
Int. Conf. on Grid and Cooperative Computing. GCC2008, Oc-
tober 2008.

[23] Chunqiang Tang, Zhichen Xu, and Sandhya Dwarkadas. Peer-
to-peer information retrieval using self-organizing semantic
overlay networks. In SIGCOMM ’03: Proceedings of the 2003
conference on Applications, technologies, architectures, and
protocols for computer communications, pages 175–186, New
York, NY, USA, 2003. ACM.

[24] M. Ripeanu, A. Iamnitchi, I. Foster, and A. Rogers. In search
of simplicity: A self-organizing group communication overlay.
SASO ’07, pages 371–374, July 2007.

[25] Márk Jelasity and Maarten van Steen. Large-scale newscast
computing on the internet. Technical Report IR-503, Vrije Uni-
versiteit Amsterdam, Department of Computer Science, Ams-
terdam, The Netherlands, October 2002.

[26] K. Shen. Structure management for scalable overlay service
construction. In NSDI’04, pages 21–21. USENIX Association,
2004.

[27] Karl Aberer, Philippe Cudré-Mauroux, Anwitaman Datta, Zo-
ran Despotovic, Manfred Hauswirth, Magdalena Punceva, and
Roman Schmidt. P-grid: a self-organizing structured p2p sys-
tem. SIGMOD Rec., 32(3):29–33, 2003.

11

