
ISIN TECHNICAL REPORT

The Document Chain
Delta State CRDT Framework for Collaborative Applications

Author(s)

Amos Brocco1

Technical Report Number

2021-1

Date

May 14, 2023

1amos.brocco@supsi.ch

2 2 RELATED WORK

Abstract

The Document Chain is an append-only data structure which implements a delta-state conflict-
free replicated data type (CRDT) for arbitrary JSON documents. Document Chains can be syn-
chronized together to integrate changes made by different clients/users. Since each chain rep-
resents different editing states of the same document, we can consider them similar to branches
in a version control repository. The chain can store its contents on a variety of backends, either
local (for example, the filesystem) or remote (such as Dropbox or a Solid pod). In this paper we
formally describe the Document Chain and prove that replicas can be made to converge without
central coordination. Furthermore we describe an architecture for collaborative applications built
upon the Document Chain and we provide an evaluation of its performance.

1 Introduction

Collaborative editing applications are expected to seamlessly merge modifications made by different
users into a single coherent document. The replication process can be performed either in real-time
(in so called, synchronous replication) or in an asynchronous way. In the latter case, users can
work on their copy (or replica) of the document while remaining offline, and defer synchronization
with other users to a later time when a network connection is available. Asynchronous replication
embraces the vision of offline-first or local-first applications, which are built to work offline but can
also exploit online features to let users exchange data with a server or between each other.
The development of collaborative applications requires a suitable communication infrastructure as
well as algorithms, data structures and protocols for dealing with concurrent modifications, conflicts
and merging strategies. The Collaborative Document project tackles on these issues by introducing
a novel conflict-free replicated data type (CRDT) which supports arbitrary JSON documents and can
exploit different types of data exchange and communication channels. The goal of the project is to
provide a framework for the development of collaboration features into existing programs, by offering
an API which is simple to use and does not require significant changes to the existing software.
For collaboration we expect to use different shared storage solutions, such as network filesystems,
cloud file-sharing platforms and physical devices. It is therefore necessary to seamlessly support
different backends. This variety provides data portability and ensures that data cannot be locked
into a particular platform or service.
The remaining of this paper is organized as follows: in Section 2 the relevant related work in the
context of conflict-free replicated data types will be explored. In Section 3 provides a formal de-
scription of the Document Chain, proving its convergence without the need for neither central nor
distributed coordination. In Section 4 we discuss some implementation details, whereas in section 6
we present several evaluation scenarios to assess the quality of our solution in comparison to other
relevant solutions.

2 Related Work

Data replication typically requires synchronization and coordination protocols to ensure consistency
while data is modified. These protocols can be implemented either using a centralized approach
(for example, a central server), or through a distributed algorithm. Each solution can be nonetheless
subject to some limitations, for example it might required reliable communication between replicas as
means to ensure that all update messages reach their destination. By using conflict-free replicated
data types (CRDTs) it is possible to modify any of the replicas without explicit coordination, neither
using a centralized service, nor by means of a distributed synchronization protocol. According to

The Document Chain

3

the definition found in [1], conflict-free replicated data types must also exhibit an additional property
related to consistency: when any two replica receive the same set of updates they must reach the
same state.
We recognize three different types of CRDTs: operation-based, state-based and delta. With operation-
based CRDTs, we deal with single update operations that specify a change or modification to the
data structure and need to be propagated to all replicas. These solutions implement specific al-
gorithms to deterministically merge modifications made on different replicas [3]. Operation based
CRDTs are typically used to deal with real-time editing or high-frequency updates, such as in the
context of collaborative text editing, because update messages waste little bandwidth. As pointed out
in [3] operation-based CRDTs depend on reliable exactly-once causal broadcast of these updates
[3]. To support the implementation of collaboration features into applications, specific libraries which
implement conflict-free replicated data types have been developed. With regard to operation-based
CRDTs, a relevant example is the Automerge [5] library, which supports not only simple data types
such as counters or character arrays, but complex JSON data too. In the latter case, Automerge
offers an API to modify the contents of a JSON document and to later retrieve a list of changes
(operations) which can be replayed on another replica.
When dealing with low-frequency updates or single edit operations are not commutative, state-based
CRDTs [12] can provide some advantages over operation-based solutions. In particular it is easier
to verify the correctness of the data in a particular point in time. However, state-based solutions
require more storage space and consume more bandwidth, since the size of all states can become
very large [4].
To overcome these issues, delta-state CRDT have been proposed. These data types (referred to
as δ-CRDT) work by disseminating updates (changesets) called delta mutations [4] instead of full-
states. An important property of such delta updates is that they are idempotent, which means that
they can be applied possibly several times to an existing state without affecting its consistency. This
property is of particular interest when the communication channel is unreliable or it is difficult to keep
track of updates which might have already been applied in the past.
In this report we detail a novel approach based on delta-states called Document Chain. In contrast
to existing solutions, which typically consider only simple types [4, ?] we aim at supporting arbitrary
JSON documents. Compared to operation-based solutions we do not require explicit editing of
the input data through built-in functions: instead, delta updates are automatically determined by
comparing an existing state with an input JSON document. This approach has the advantage of
being simpler to integrate into existing applications, since it is not necessary to explicitly record
changes made to the data model (as in operation-based CRDTs). Typically, it is only necessary to
implement suitable serialization and deserialinzation methods to generate a JSON representation of
the internal data model of an application.
Furthermore, the proposed CRDT can store its data on a variety of backends, such as on the filesys-
tem or in a shared folder. Multiple users can update the Document Chain independently without
explicit locks while accessing the data on the network. Furthermore, each update is sequenced into
a chain to maintain causality and provide a way to easily recover previous versions of the data. Con-
flicts are dealt with in a non destructive manner by keeping all versions and by electing a winning
version using a deterministic algorithm.

3 The Document Chain

A Document Chain is a data structure which stores a collection of JSON objects that can be repli-
cated on multiple sites and concurrently updated by each participant. Each object in the chain is

ISIN Technical Report 2021-1 The Document Chain

4 3 THE DOCUMENT CHAIN

identified by a UUID and its value (or content) can be modified independently on each replica of the
chain, resulting in a new local state. Modifications made to an object are dealt with by creating a new
version of the object itself, which is stored alongside previous versions. Accordingly, each version
can be considered as an immutable. Deletions are recorded using tombstones, namely values which
represent a final version of an object. Therefore, a Document Chain is a grow-only data structure,
where all present and past versions of the data are available. By keeping track of the history of each
modification it is possible to navigate through the different states of the chain.
The Document Chain is an instance of a delta-state CRDT: in the following we will present a formal
description of the data structure, and prove that under the right assumptions all replicas can be made
to converge to the same state with neither explicit coordination nor synchronization from a central
authority or using a distributed consensus protocol. For the sake of simplicity, the forthcoming
description does not include all the implementation details and optimizations, but focuses on the
essential algorithmic aspects which can be used prove convergence.

3.0.1 Key concepts

The purpose of a Document Chain is to store a collection of JSON objects. To keep track of the
objects that belong to the collection, and record the history of modifications, we compute unique
revision identifiers for each version. In the following, we describe how those identifiers are generated
and how it is possible to keep track of all modifications.

Content hash To efficiently compare different versions of an object, their content is hashed to
produce a string digest H(x). The hashing algorithm is implementation-specific, however the digest
is expected to be represented as a string using a binary-to-text encoding such as Base64. The
identifier of the object, referred to as idx, is omitted from the hash computation, so to avoid storing
the same data multiple times when two versions xm and yn of two objects x and y have equivalent
content (i.e. H(xm) ≡ H(yn)).

Partial revision string Modifications made to an object can be recorded as an ordered list of
digest values [H(x1), . . . ,H(xN)], where xk represents the contents of the k-th version of object x.
The order of the list can be maintained by prefixing the absolute position of the element in the list (a
numerical index starting at 1) to the digest. The sequence thus becomes [1-H(x1), . . . , N -H(xN)],
and we refer to each value N -H(xN) as a (partial) revision string.

Revision tree Each modification produces a new revision string. It is possible to keep track of
the history of each update by maintaining a directed revision tree for each object in the collection.
A revision tree is composed of nodes, which represent revisions, and edges, which represent a
causality relation between revisions. A modification of an object at revision rN which produces a
new revision rN+1 is recorded by adding a new node corresponding to rN to the tree, which is
connected to another node for rN+1. Revision rN is referred to as the parent of rN+1, whereas
the latter is referred to as the successor. By navigating the revision tree it is possible to determine
previous values or conflicting versions.

Full revision string Due to concurrent modifications (which are expected to happen on different
replica of the Document Chain that are subsequently merged), the sequence of revision strings
might become non-linear (we can refer to it as a revision tree). In this situation a revision might
have more than one successor. As an example, if two users concurrently modify revision k-H(xk),

The Document Chain

5

the sequence would have two different successors of that revision, namely (k + 1)-H(xk+1) and
(k + 1)-H(x′k+1)). To uniquely identify revisions which share the same numerical index and hash
value but belong to different branches of the tree, we add a suffix (referred to as Tail) to each
revision string (apart from the first one, which has not predecessor). The Tail is computed by a
determistic function T on the hash value of the preceding revision string, and must ensure that all
revision strings are different (i.e the labels of the nodes in each revision tree are unique). Therefore,
the (full) revision string rN associated with the contents xN becomes N -H(xN)_TailN , where
TailN = T (H(rN−1)).

Leaf revisions and conflicts Revisions that have no successors in the tree are called leafs. Con-
flicting revisions result from concurrent modifications made on different replicas. If a revision tree
exhibits only one leaf revision, the corresponding object has no conflicts. On the contrary, concur-
rent (conflicting) modifications can lead to the existence of multiple leafs inside a revision tree. In the
simplest case, if two or more revisions share the same parent they are considered as in conflict. As
illustrated in Figure 1, revisions r4aa, r3ab, and r4b are conflicting leafs in the considered revision
tree.

Figure 1: Leaf revisions (blue background): if there exists multiple leaf revisions, conflict arise.

Revision history Since a revision tree is connected, it can be conveniently stored as set of edges,
where each edge is a tuple of revision strings. Given a revision tree, it is possible to determine the
history of all the modifications made to an object that led to a particular revision by simply tracing a
path in the tree (namely a sequence of revision strings) starting from the origin (i.e. the first revision).
In the example shown in Figure 2, the revision history for revision r4b is [r1, r2b, r3b, r4b].

Figure 2: Revision tree and revision history for r4b (highlighted with a yellow background). In this
example, Revision r4b is also the winning revision.

Winning revision The revision with the longest revision history (or the highest index) is considered
the winning revision. In the example depicted in Figure 2, the winning revision is r4b. If multiple

ISIN Technical Report 2021-1 The Document Chain

6 3 THE DOCUMENT CHAIN

revisions have the same index value, revision strings are compared in lexicographic sort order, and
the highest is deterministically chosen as the winning one. For example, in Figure 2, the history of
both r4aa and r4b has a length of 4, but r4b can still be elected as the lone winner. The winning
revision is used to determine the contents that shall be returned when querying for the latest version
of an object and to identify the revision that will be updated when the content is modified. By
definition, a winning revision is also a leaf revision.

3.1 The Document Chain as a labeled rooted tree

The (full) state of a Document Chain (which comprises the history of all modifications) can be de-
scribed by a tuple ⟨D,O⟩, where D is a map which associates the UUID of an object with its revision
tree (the set of edges), and O is a map which associates H(x) with a value x representing the
contents of a specific version of an object.
The D map can also be represented as a labeled rooted tree, where first-level vertices (connected
to the root) represent the objects (which are labeled according to their UUID idx), and descendants
of those objects are the corresponding revision trees.
Similarly, the O map can also be represented as a labeled rooted tree, with first-level vertices labeled
according to the hash-value H(x) of some content x: each first level vertex is connected to exactly
one second level vertex which contains the corresponding content.
With this representation, the full state ⟨D,O⟩ of a Document Chain can be translated into a labeled
rooted tree (with a root node R). The initial (empty) state of such a graph is ⟨V,E⟩ where V =
{R,D,O} and E = {(R,D), (R,O)}.

3.2 The Document Chain as set of tuples

Edges in the aforementioned tree can be represented by means of tuples ⟨X,Y ⟩. To ensure that
edges belonging to different revision trees are recognizable as such, we replace revision strings with
universal revision strings ridN = idx : N -H(xN)_TailN , where idx is the universal unique identifier
(UUID) of the object x. Accordingly, a Document Chain can be uniquely represented by a set of
such tuples.

3.3 The Document Chain as a state-based CRDT

According to [4], a state-based CRDT consists of a triple (S,M,Q), where S is a join-semilattice (a
set with partial order ⊑ and a binary join operation ⊔ which returns the least upper bound of two
elements in S while being commutative, associative, and idempotent), Q is a set of query functions
(for reading the data), and M is a set of mutators that update a state X ∈ S to produce a new state
X ′ = m(X) such that ∀m ∈ M,X ∈ S : X ⊑ m(X). We will now try to map the structure and
operation of the Document Chain into this definition to prove that it represents a state-based CRDT.
The comparison operation used to obtain a partial ordering can be simply mapped to a subset ⊑
relation. The join operation ⊔ can be assigned to a union between two sets of edges E and E′, which
results in E′′ = E ∪ E′. By its very nature, the union fulfills the requirement of being commutative,
associative, and idempotent. Moreover, given two states E,E′ (both in S) we can always find a state
E′′ ∈ S′ such that A ⊑ E′′,∀A ∈ {E,E′}, hence E′′ is the least upper bound of {E,E′}, making S
a join-semilattice.
Concerning mutators, by representing the Document Chain as a tree, any modification translates into
adding one edge to the state. An update of state X ∈ S can thus be formalized as E′

X = EX ∪ {e},
where e is the edge to be added, and EX ,E′

X are the sets of edges of the current state X and the

The Document Chain

7

resulting state X ′ respectively. Mutators are therefore inflations [4], and the requirement X ⊑ m(X)
holds ∀m ∈M,X ∈ S.
Because the set union operation ∪ is commutative, associative, and idempotent, the Document
Chain is a state-based CRDT. This should not come as a surprise to anyone, given that the former
is isomorphic to a G-Set (Grow-only Set [12]).

3.4 The Document Chain as a δ-CRDT

Propagating the full state of the Document Chain (and other state-based CRDTs) in order to up-
date all replicas is an expensive operation. In this regard, Delta State-based CRDT (δ-CRDT, [4])
employ deltas (fine-grained states), which are comparatively smaller than full-states, while ensuring
convergence as with state-based CRDTs.
According to [4], a δ-CRDT consists of a triple (S,M δ, Q), where S is a join-semilattice of states, M δ

is a set of delta-mutators, and Q is a set of query functions. The state transition at each replica is
given by either joining the current state X ∈ S with a delta-mutation (X ′ = X⊔mδ(X)), or by joining
the current state with some received delta-group D (X ′ = X ⊔D). Delta-mutators are defined as
functions, corresponding to an update operation, which take a state X in a join-semilattice S as
parameter and return a delta-mutation mδ(X) ∈ S. Finally, a delta-group is inductively defined as
either a delta-mutation or a join of several delta-groups.
Each revision update represents one or more edges to be added to the state graph, hence in our
case we have X ′ = mδ(X) = X ⊔mδ(X), where X,X ′ ∈ S and mδ(X) ∈ S is the delta mutation.
By grouping delta-mutations into delta-groups D, the relation X ′ = X ⊔D holds when D = mδ(X)
and by associativity can be extended to a join of several delta-groups. Delta-mutators simply joins a
set of updates to an existing state.
Since the Document Chain is equivalent to a δ-CRDT grow-only set, as proposed in [4], it is possible
to achieve state convergence by ensuring that all delta-mutations generated in the system reach
every replica.

3.5 State serialization

The serialization of the Document Chain considers both the formal model as described in the previ-
ous section, and additional functional requirements. More specifically, we want to ensure that each
modification can be traced back to its author, and that it is possible to navigate through the history
of a Document Chain in order to retrieve specific versions of the data. Unfortunately, the delta-state
decomposition discussed in Section 3.4 fails to capture the causality between updates. Hence, we
propose to decompose the state into a chain of revision update record blocks (each representing a
sequence of updates) alongside with data packs.

3.5.1 Revision update record blocks

When an object is modified, a corresponding update record is produced. When the full state is
updated, multiple records might be generated: we thus consider sequences of records that we call
revision update record blocks (or simply blocks). Blocks are propagated to other replicas to update
their state, either by direct connection or by means of a common storage.
We assume that the contents of a new version of an object x can be retrieved by means of the
corresponding hash value (H(x)), hence update records only describe the modification in terms of
an edge to be added to the revision tree of that particular object (and, in general, to the full state of
the Document Chain). We recognize two ways of representing an update record: a compact form,

ISIN Technical Report 2021-1 The Document Chain

8 3 THE DOCUMENT CHAIN

and a complete form. The compact form requires that updates are causally applied, whereas the full
form has no such requirement.
In the complete form, an update record represents a finite path (starting from the root R) inside
the state graph, such as, for example (R,D, id, rid1 , rid2 , . . . ridN−1, r

id
N), where id is the UUID of the

modified object. To reduce the actual space required by such a record, each revision ridN = id :
N -H(xN)_TailN could be replaced with H(xN) by omitting several information which can be easily
recovered: the object’s identifier id (which is already part of the path), the index prefix N− (which can
be reconstructed by considering the current position inside the path), and the _TailN suffix (which
can be computed from the preceding revision string). Furthermore, R and D could be omitted as we
are implicitly considering updates to a revision tree. Without loss of information, the update record
can be therefore stored as (R,D, id,H(x1), H(x1), . . . H(xN−1), H(xN)). When processing such
an update record all vertices (corresponding to objects or revision strings) and edges along the path
that do not yet exist must be created.
Using the compact form, we recognize two types of records: creation records and modification
records. A creation record is a tuple in the form ⟨idx, H(x1)⟩, where idx is the UUID of an object
x, and x1 is the first version of x: these values can be used to compute a revision string rid1). A
modification record is a triple in the form ⟨id,H(xN), rN−1⟩, where idx is the UUID of the modified
object x, H(xN) is the hash of the updated version of x and rN−1 is the revision upon which the
modification is made. These values are used to compute a new revision of the object ridN . Modifi-
cation records represent both updates to a new version, and deletions (marked with a tombstone
revision).

3.5.2 Data packs

The content of each object referenced by an update record is stored within data packs. Each ob-
ject is uniquely identified by the hash value of its contents, thus avoiding duplicates. To efficiently
enumerate the objects contained in a data pack and ease content retrieval, an index is generated
alongside each data pack. The index maps the hash value of an object to a position inside the pack
file: it is therefore possible to enumerate all the objects inside a pack or to extract a specific object
from a pack by performing partial reads. Pack files and the corresponding indices share the same
stem (the name of the file without the extension), which is generated by hashing the contents of the
pack file. For simplicity, data packs can also be parsed as arrays of JSON documents, therefore the
corresponding indices can be recovered if necessary. Indices also provide an advantage in a dis-
tributed environment, since their size is typically smaller than the corresponding pack. Furthermore,
both packs and indices are immutable, and can be cached locally to reduce the communication
overhead. To keep track of newly created data, each revision update record blocks also stores a
reference to the corresponding data pack : this allows for determining all new objects that have been
created during that update.

3.5.3 Block ordering

In order to ensure causal consistency between modifications, we introduce an ordering relation that
applies to any pair of block. This allows for determining the order of each update and thus maintain
an history of modifications. It should be noted that this ordering is not strictly necessary to ensure
the convergence of the Document Chain.
Each block is linked to the previous ones in the chain (according to the edit history) by means of a
hash reference (which is computed by hashing the contents of the block), as shown in Figure 3. We
employ the plural form "ones" because the sequence of blocks can become non-linear when multiple

The Document Chain

9

replicas are concurrently updated (i.e. new blocks are independently added on different branches
and on different replicas) and those updates are disseminated asynchronously to other replicas. The
referenced blocks are referred to as anchors. Anchors are determined by looking at the current local
chain and correspond to all blocks that haven’t yet been referenced by any other block.

Figure 3: The Document Chain - Logical overview: Revision Update Record Blocks are denoted us-
ing the .changes suffix, whereas Data Packs use the .pack suffix; arrows represent hash references
between elements in the chain.

With the addition of a binary relation ≤ between a block w and its ancestors (represented as a set
Ancestors(w)) such that a ≤ b,∀a ∈ Ancestors(b), the set of blocks becomes partially ordered.
The relation between blocks also simplifies the process of determining missing data which has not
been delivered to a replica, improving the consistency of the structure.
In practice, we construct a rooted tree of all blocks, where each block is uniquely identified by the
hash of its contents and edges are determined by means of hash-references. Each edge also
represents a state of the Document Chain, which can be reconstructed by joining all the update
blocks starting from the root of the graph (which is called the origin block). To ensure convergence,
this partial ordering is however insufficient: the set of states S also needs to form a join-semilattice,
because block the aforementioned ≤ relation does not apply to blocks on different branches of the
tree.

Figure 4: The reference to an ancestor block (represented by an arrow) is not enough to define a
join-semilattice: in this example, given S = {m2a,m2b}, ∄ x ∈ S : sup S = x, i.e. there is no least
upper bound.

Consider the example graph shown in Figure 4, which assumes a Document Chain results from the
joining of concurrently updated replicas: block m2a and m2b have no least upper bound, therefore
the graph does not represent a join-semilattice. To overcome this issue we introduce an additional
ordering between blocks based on a lexicographical comparison < on their identifiers: with this
additional ordering (which is deterministic and agreed upon by all replicas), given a set S of revision
update record blocks, for all x and y in S, a least upper bound of the set {x, y} always exists. More
specifically, the example in Figure 4 can be transformed into a complete-semilattice (i.e. a join and
meet semilattice), as shown in Figure 5 (where m2b becomes the least upper-bound of {m2a,m2b},
and m1 is the greatest lower-bound), and the blocks form a totally ordered set (which is also called

ISIN Technical Report 2021-1 The Document Chain

10 3 THE DOCUMENT CHAIN

a chain).

Figure 5: By introducing a lexicographical relation < between block identifiers (represented by a
dotted arrow, where x −→ y ⇔ y < x), given S = {m2a,m2b}, we have a least upper bound sup
S = m2b .

3.5.4 Conflict-free modification and replication

The Document Chain supports lock free concurrent modifications as long as the backend storage
(which will be discussed in the forthcoming section) allows for concurrent appending of new data.
The replication process can also be performed without any locking mechanism: chains can be repli-
cated by simply merging two or more collections of blocks, packs and indices together. For example,
if blocks and packs are stored as files inside a directory, replication to a target chain is achieved by
simply copying files between the two locations. Because files are named after the hash value of their
content, files that already exist in the target directory can be ignored. At any time, the integrity of the
chain can be verified: thanks to hash references inside blocks it is possible to determine wheter the
chain is complete or not, and identify the missing or corrupted blocks or packs. If digital signatures
are employed, the authenticity of the data can also be verified.

3.6 Supporting hierarchical JSON documents

As discussed in the previous sections, a Document Chain is a data structure which stores a col-
lection of JSON objects. Each object is individually versioned and represent the smallest unit of
data. Forcing client application to map their internal data model to such a collection is often imprac-
tical and might hinder the adoption of the proposed concept. Moreover, contrary to operation-based
CRDTs such as Automerge [5] our approach strives to avoid requiring explicit editing of the input
data through a specific API. We therefore propose a reversible data transformation algorithm which
processes an arbitrary input JSON document and decomposes it into a collection of individual ob-
jects. At any time, the state of the Document Chain can be processed to recreate the original
structure of the document. This process requires that the root of the input document is an object: in
situations where this requirement is not originally fulfilled (for example, if the root of the document is
an array), the input can should be refactored to satisfy this condition. In the following the procedures
for updating the state from a structured input document and for transforming (reading) the state back
into the original structure are presented. Maps (associative arrays) are denoted with curly braces { };
square brackets [] are used to indicate both arrays and access to a specific field of a map. Methods
(whose goal should be self-explanatory) are invoked using the dot notation.

The Document Chain

11

Algorithm 1 Flattening Procedure
1: Objects := {} ▷ Map of extracted objects
2: procedure FLATTEN(value, path := [])
3: switch value.type() do
4: case String
5: string := value.as_string()
6: return STRING_PREFIX + string

7: case Array of Object
8: array := value.as_array()
9: order := []

10: for each object ∈ array do
11: id := MAKEIDENTIFIER(object, path)
12: FLATTEN(object, path)
13: order.append(id)
14: end for
15: ordering := {}
16: ordering[ORDER_FIELD]← order
17: Objects[path]← ordering
18: return ARRAY_PREFIX +path
19: case Array
20: array := value.as_array()
21: newarray := []
22: for each value ∈ array do
23: newarray.append(FLATTEN(value, path))
24: end for
25: return newarray

26: case Object
27: object :=value.as_object()
28: for each [key, value] ∈ object do
29: p := path.append(key)
30: t := FLATTEN(value, p)
31: object[key]← t
32: Objects.append(t)
33: end for
34: return OBJECT_PREFIX + path

35: default return value

36: end procedure

ISIN Technical Report 2021-1 The Document Chain

12 3 THE DOCUMENT CHAIN

Algorithm 2 Creation of Revision Update Record Blocks
1: procedure MAKERECORDBLOCK(Objects, ⟨D,O⟩)
2: Processed := []
3: block := []
4: for each [id, content] ∈ Objects do
5: if id ∈ state then
6: h := HASH(content)
7: w := D[identifier].winning_revision()
8: wh := w.hash()
9: if h ̸= wh then

10: O[h]← content
11: r := MAKEREVISION(w,h)
12: ur := MAKERECORD(UPDATE, id, w, r)
13: D ← D ∪ {ur}
14: block.append(ur)
15: end if
16: Processed.append(id)
17: else
18: h := HASH(content)
19: O[h]← content
20: r := MAKEREVISION(w,h)
21: ur := MAKERECORD(CREATE, id, w, r)
22: D ← D ∪ {ur}
23: block.append(ur)
24: end if
25: end for
26: for each id ∈ State do
27: if id /∈ Processed then
28: w := state[identifier].winning_revision()
29: t := MAKETOMBSTONE(w)
30: ur := MAKERECORD(DELETE, id, w, t)
31: D ← D ∪ {ur}
32: block.append(ur)
33: end if
34: end forreturn block
35: end procedure

The Document Chain

13

3.6.1 Destructuring process (Update State)

Our solution employs a two-step difference detection algorithm (derived from [10]) to determine the
changes between the input data (an arbirary JSON document which represents the new state) and
the latest available state of the CRDT. In the first step (summarized in Algorithm in 1), the hierarchical
structure of the input document is recursively flattened to extract nested objects contained within
arrays (of objects) and other objects. Each object is assigned a unique identifier (according to some
user-specified rules or using a deterministic algorithm which uses the path of the object inside the
hierarchy). To ensure that this procedure is reversible, extracted objects are replaced with string
references (all other strings are escaped to avoid conflicting with those references). To be able
to reconstruct arrays (during the unflattening process), the sequence of identifiers of each object
inside destructured arrays is stored in an ordering object. The STRING_PREFIX, ARRAY_PREFIX,
and OBJECT_PREFIX values are implementation dependent character strings used to distinguish
between different types of references, whereas ORDER_FIELD is the key to be associated with the
ordering sequence array. The MAKEIDENTIFIER function is implementation specific, and is supposed
to deterministically generate or obtain a unique identifier for the given object (typically by combining
one or more user-defined fields).
In the second step (Algorithm 2), all extracted objects are compared against the current state ⟨D,O⟩
of the Document Chain. When changes are detected, this comparison produces a corresponding
revision update record: if the object is not found in the current state a create record is appended to
the block, whereas if the object is found, the contents are compared to determine if a modification
took place and an update record needs to be created. Objects in the chain that have disappeared
in the input documents are considered as deleted: in this case a tombstone revision is created
and a corresponding delete record is appended to the block. The contents of a record can be
either complete or compact, depending on the implementation-specific details of the MAKERECORD

function. The MAKEREVISION and MAKETOMBSTONE functions generate a new revision string rN+1

given a revision string rN . Finally, the HASH function is used to compute the digest of the content of
an object using a deterministic hash algorithm, such as SHA-256 or xxHash. The complete update
procedure is listed as Algorithm 3 (we assume that the Objects array is globally visible inside both
the aforementioned procedures).

Algorithm 3 Update State Procedure
1: Objects := {} ▷ Map of extracted objects
2: procedure UPDATESTATE(⟨D,O⟩, Input)
3: Root := FLATTEN(Input)
4: Objects← Objects ∪ {Root}
5: return MAKERECORDBLOCK(Objects, ⟨D,O⟩)
6: end procedure

3.6.2 Reconstruction process (Read State)

The goal of the reconstruction process is to read the state of the Document Chain and rebuild the
original structure of the document. The core procedure of this process is presented in Algorithm 4:
starting from an initial value (typically the root of the resulting hierarchy, as shown in Algorithm 5),
the unflattening procedure is recursively called to replace all references (to arrays and objects) with
the corresponding value (as obtained from the current state). Ordering objects are used to restore
the proper sequence of objects inside arrays, whereas non-reference strings are simply unescaped

ISIN Technical Report 2021-1 The Document Chain

14 3 THE DOCUMENT CHAIN

by removing the corresponding prefix.

3.6.3 Non-destructive array merging

Structured documents that contain arrays of objects can be used to serialize collections, lists or
tables. Several applications that deal with structured data are built around a list data model. Whereas
items in the list can be easily serialized into JSON objects and considered as atomic data, the list
itself is expected to be modified in a non-atomic way. If an object contains an array of other objects,
the previously described synchronization process would easily lead to unexpected data losses when
concurrent edits take place. In particular, let’s consider concurrent modifications that add elements
to an array. We begin with an array of three elements [A,B,C], where the letters A, B, and C
each represent an object. The flattening procedure creates a corresponding ordering document that
stores this order. On the local replica, an user might add a new element D and transform the array to
[A,B,C,D], whereas another user might insert a new element E between A and B (by editing its own
local replica). Therefore, there would be two conflicting ordering documents with different contents.
What would be the correct or expected value of the array if the two replicas are synchronized? If no
special care is taken, the resulting value would either be [A,B,C,D] or [A,E,B,C]. At the lowest level,
these two versions correspond to conflicting leaf revisions. While semantically correct, the result
means that one of the two users would see their newly added item disappear.

Figure 6: The Document Chain - Document Ordering Example.

The logic of the Document Chain takes care of this problem and produces a temporary new version
of the array that retains both modifications, namely [A,E,B,C,D], by merging arrays that belong to
conflicting versions of an ordering document. This example is illustrated in Figure 6. The algorithm
for merging arrays is described in Algorithm 6.
The algorithm first determines a common element between the two arrays. The first element in the
source array which is also in the target array is considered as a pivot element : all other elements
will be placed in relation to this element to maintain, as close as possible, the existing order between
newly added elements.
Consider the example shown in Figure 7. When merging the ordering 2 into ordering 1, the common
element A is identified as the initial pivot. The algorithm iterates over the elements of the second
ordering: C is the next common element, which becomes the new pivot. In the next step, element D
is processed: this element is not present in the first ordering, therefore it is inserted after the current
pivot. Element D becomes the new pivot. The same procedure is applied to element E, which in
turn becomes a pivot.
Another example is shown in Figure 6. In this case, the pivot elements are A, then C, D, E, F.

The Document Chain

15

Algorithm 4 Unflattening Procedure
1: procedure UNFLATTEN(⟨D,O⟩, value)
2: switch value.type() do
3: case String
4: string := value.as_string()
5: if string.startsWith(ARRAY_PREFIX) then
6: id := string.remove(ARRAY_PREFIX)
7: w := D[id].winning_revision()
8: wh := w.hash()
9: o := O[w.hash()]

10: a := []
11: for each id ∈ o[ORDER_FIELD] do
12: wid := D[id].winning_revision()
13: whid := wid.hash()
14: soid := O[wid.hash()]
15: a.append(UNFLATTEN(⟨D,O⟩, soid))
16: end for
17: return a
18: end if
19: if string.startsWith(OBJECT_PREFIX) then
20: id := string.remove(OBJECT_PREFIX)
21: w := D[id].winning_revision()
22: wh := w.hash()
23: o := O[w.hash()]
24: o :=
25: for each [key, value] ∈ o do
26: o[key]← UNFLATTEN(⟨D,O⟩, value))
27: end for
28: return o
29: end if
30: return string.remove(STRING_PREFIX)
31: case Array
32: array := value.as_array()
33: na := []
34: for each value ∈ array do
35: na.append(UNFLATTEN(⟨D,O⟩, value))
36: end for
37: return na

38: case Object
39: o := value.as_object()
40: for each [key, value] ∈ object do
41: o[key]← UNFLATTEN(⟨D,O⟩, value)
42: end for
43: return o

44: default
45: return value

46: end procedure

ISIN Technical Report 2021-1 The Document Chain

16 4 THE DOCUMENT CHAIN AS A FRAMEWORK

Algorithm 5 Read State Procedure
1: procedure READSTATE(⟨D,O⟩, rootid)
2: w := D[rootid].winning_revision()
3: wh := w.hash()
4: o := O[w.hash()]
5: return UNFLATTEN(⟨D,O⟩, o)
6: end procedure

Figure 7: The Document Chain - Document Ordering Example.

Figure 8: The Document Chain - Document Ordering Example.

4 The Document Chain as a framework

The deployment of a Document Chain entails three key elements: the implementation of the pre-
sented δ-CRDT data model, a high-level API for accessing the data, and a generic layer for managing
storage and propagation of delta states. In this section a generic framework which provides all these
elements will be presented and discussed.

4.1 Document chain API

The functionalities of the underlying CRDT are exposed through a high-level API which implements
methods to read and update data, navigate the underlying Document Chain (to retrieve previous
versions, or states), fork a new chain or merge the current state into another chain.
The minimal API is comprised of four functions, namely update, read, replicate, and meld. The
update function receives an input JSON document and applies the destructuring algorithm presented
in the previous sections in order to convert it into a collection of objects which represent the new

The Document Chain

17

Algorithm 6 Array merging algorithm
1: procedure MERGEARRAYS(Source, Target)
2: InsertPosition := 0
3: PivotIndex := 0
4: for each item ∈ Source do
5: if item is in Target then
6: InsertPosition← Target.IndexOf(item)
7: break
8: else
9: PivotIndex← PivotIndex+ 1

10: end if
11: end for
12: CurrentIndexInSource := 0
13: for each item ∈ Source do
14: if item is in Target then
15: InsertPosition← Target.indexOf(item)
16: else
17: if CurrentIndexInSource < PivotIndex then
18: Target.insert(InsertPosition, item)
19: PivotIndex← CurrentIndexInSource
20: else
21: InsertPosition← InsertPosition+ 1
22: Target.insert(InsertPosition, item)
23: end if
24: end if
25: CurrentIndexInSource← CurrentIndexInSource+ 1
26: end for
27: end procedure

ISIN Technical Report 2021-1 The Document Chain

18 4 THE DOCUMENT CHAIN AS A FRAMEWORK

Figure 9: The Document Chain - Data Structures: : Revision Update Record Blocks are denoted
using the .changes suffix, Data Packs use the .pack suffix and Data Pack Indices use the .index
suffix; the [offset,length] tuples inside indices refer to a byte range within the corresponding pack.

state. The read function produces a JSON document starting from a document chain. Replicate and
meld are two replication strategies implemented by the framework: the details of these two functions
are provided in Section 4.3.
The Document Chain framework provides both a simple API, based which uses the standard C++
library, as well as an extended Qt API. In the following the Qt API will be presented.

4.2 Adapters

In order to provide a flexible way of storing data on different backends, the low-level task of reading
or writing the elements of the chain is fulfilled by pluggable adapters, which can interface with several
backends. Several adapters have been implemented to save data on the filesystem (which stores
blocks and packs as files), on cloud sharing platforms (such as Dropbox and Nextcloud), on a
relational database (for example MariaDB or SQLite), and in-memory (for temporary data).
Adapters implement a state machine in order to support asynchronous operation. The states of an
adapter are illustrated in Figure 10. The initial state, UNINITIALIZED signals that the adapter is not
ready to be used, whereas the INIT state is used to indicate that the adapter has been initialized
but still need to be synchronized with the backend storage. When the adapter is in the READY
state the Document Chain can be read or updated. On the contrary, if the state is NEED_PULL
or NEED_PUSH, data must be transferred from or to a remote location. Transfers are signaled by
transitioning to the BUSY_PULL or BUSY_PUSH states.
Adapters that access data on remote locations might need to maintain a local cache. Accordingly,
the adapter transitions to different states in order to signal the need for pulling or pushing data from
and to a remote site. Each adapter need to implement a specific API comprised of the following
methods:

• init: used to initialize the adapter;

• update: used to update the state of the adapter and synchoronize it with the storage backend;

• push: used to initiate or resume a push operation;

• pull: should start or resume a pull operation;

The Document Chain

19

Figure 10: The Document Chain - Adapter States.

• list_objects: lists all objects of a specific type;

• read_object: performs a partial or complete read of an object;

• write_object: writes an object;

• free_char_ptr: releases the memory allocated during a read operation;

• prefetch: prefetches an object (for example, from a remote storage);

• begin_chain_update: signals the beginning of an update operation;

• end_chain_update: signals the end of an update operation (used for flushing the backend
storage when deferred writes occour).

Different types of adapters have been implemented to fulfill the requirements of the project, namely
a filesystem adapter, a SQLite adapter, a Dropbox adapter and a WebSocket adapter.

4.2.1 The QAdapter class

Each adapter must implement the aforementioned methods by subclassing the abstract class QAdapter.
This class derives from docchain::Adapter and provides Qt specific features, such as a signal to no-
tify for state changes.

• void set_state(docchain::AdapterState state, const QString &message = {}) (pro-
tected): this method is used by derived classes to change the state of the adapter: when the
state is changed a corresponding stateChanged signal is emitted.

ISIN Technical Report 2021-1 The Document Chain

20 4 THE DOCUMENT CHAIN AS A FRAMEWORK

• void stateChanged(docchain::AdapterState state, docchain::AdapterState previous,
const QString& message) (signal): this signal is emitted when the state of the adapter
changes. Both the new state and the previous one are provided, as well as a string mes-
sage.

4.2.2 Filesystem Adapter

The Filesystem Adapter (Figure 11) stores all data items as files inside a directory. The contents of
the directory can be subsequently synchronized using a suitable protocol (such as rsync). A strict
writing order is enforced by the adapter, as to store data packs and indices before delta blocks: this
prevents situations where a block cannot be fully processed because the relevant, dependent data
is not yet available.

Figure 11: The Document Chain - Filesystem Adapter

4.2.3 SQLite Adapter

The SQLite adapter is built upon the SQL module from the Qt Framework. It supports writing on a
single database file where data items are divided into different tables (Figure 12). Each table con-
tains pairs of keys (hash values) and string data. Data is written to the database using transactions,

The Document Chain

21

which enclose each commit operation. This adapter could be easily modified to support other types
of SQL databases, as supported by Qt.

Figure 12: The Document Chain - SQLite Adapter

4.2.4 Memory Adapter

The memory adapter (Figure 13) stores its data by means of an associative array. This adapter is
useful for temporary data and can be employed to store local replicas.

Figure 13: The Document Chain - Memory Adapter

ISIN Technical Report 2021-1 The Document Chain

22 4 THE DOCUMENT CHAIN AS A FRAMEWORK

4.2.5 WebSocket Adapter

The WebSocket adapter (Figure 14) is comprised of two parts: the adapter itself (client) and a server
component. The server makes use of a persistent adapter to provide a storage backend which is
accessible from a client. The adapter connects to a server in order to read and write data.

Figure 14: The Document Chain - WebSocket Adapter

4.2.6 Dropbox Adapter

The Dropbox adapter enables users to store data in a shared folder. The adapter requires authen-
tication, therefore an additional state, called NEED_AUTH, was added. As soon as the Dropbox
adapter is initialized, the authentication state is checked, with two possible outcomes: If the appli-
cation is not authenticated, the adapter goes in the NEED_AUTH state, until the user authenticates
itself; otherwise, if the application is already authenticated, the update method is called.
The update method reads the files list stored on Dropbox: if no files are present, the adapter goes
in the READY state, whereas if files need to be fetched from the server, the adapter goes in the
NEED_PULL state. A client application can react to this change and start to execute a pull. When
the local state is in sync with the remote one the adapter transitions to the READY state. This
workflow is illustrated in Figure 15.

Authentication In order to work, the Dropbox adapter needs an authentication token from Drop-
box. The token can be passed directly to the adapter when creating it, or can be obtained by an
Oauth authenticator, which handles the authentication procedure. Once the authenticator gets the
token, it passes it to the adapter. The Oauth authentication is performed using the Qt Network
Authorization library.

4.2.7 Detailed description

The API provides several types to deal with the Document Chain itself and with adapters. The QDoc-
umentChain class implements the methods to interact with the data structures, whereas classes
deriving from QAdapter implement storage backends. In this section all the methods implemented
by the Qt version of the Document Chain will be presented.

• explicit QDocumentChain(std::shared_ptr adapter, const QJsonObject& config =
{}, const QString& block = {}): a DocumentChain object can be constructed by provid-
ing a suitable storage adapter. An optional configuration JSON can be provided: this file can

The Document Chain

23

Figure 15: The Document Chain - Dropbox Adapter States and Workflow (Pull)

be used to pass additional parameters to the underlying libstooldb library. Moreover, a block
identifier can be used to process the chain up until a specific commit.

• bool touch() const: the touch method forces a read for every referenced object on the
backend adapter. This can be used for prefetching data from a remote storage (if local caching
is supported by the adapter).

• void update(const char *json): this method is used to update the Document Chain with
the given JSON data. The input will be processed by the flattening procedure, resulting in
a new state. Changes will not be written to the storage backend until an explicit commit is
performed.

• void update(const QJsonDocument &json): same as the previous method, but this ver-
sion accepts a QJsonDocument instead of a string.

• QJsonObject meld_to(QDocumentChain &target, bool include_caches = false, bool
full_blend = false) const: this method is used to meld the chain into another (a detailed

ISIN Technical Report 2021-1 The Document Chain

24 4 THE DOCUMENT CHAIN AS A FRAMEWORK

Figure 16: The Document Chain - Dropbox Adapter States and Workflow (Push)

description of the melding process will be provided in Section 4.3). Melding can include cache
data if indicated by the corresponding parameter. Furthermore, it can either meld only loaded
blocks or all blocks (by reloading the state of the backend adapter), regardless of the currently
loaded chain (if full_blend is set to true all blocks will be considered).

• QJsonObject read() const: transforms (unflattens) the data in the chain and returns the
corresponding JSON document.

• QStringList anchors() const: returns a list of all anchor blocks.

• QString viewpoint() const: returns the current target anchor block, or an empty string if
multiple anchors are present. If the document chain was instanced with a specific commit
point, this method returns the corresponding block identifier.

• QString cache() const: requests the creation of a cache of the current version of the chain.
This cache speeds up the access to the document chain because previous blocks are not
needed anymore to access the data at that commit point.

• QStringList caches() const: returns a list of all cached commit points (blocks).

• QJsonObject changes(const QString &block = {}) const: returns a description of all
the changes that were made in the specific block. If no block identifier is specified, the changes
made in the current viewpoint/last commit is provided.

• QJsonObject details(const QString &block) const: returns a detailed description of all
the changes that were made in the specific block.

• QJsonObject revision(const QString &revision) const: returns the data associated
with the given revision.

• QString create_object(const QString &id, const QJsonObject &o): creates an ob-
ject with the specified contents. This method returns the first revision string.

• QString update_object(const QString &id, const QJsonObject &o): updates an ex-
isting object with the specified contents. This method returns the resulting revision string.

The Document Chain

25

• QString delete_object(const QString &id): deletes an existing object and returns the
resulting revision string.

• QJsonObject value(const QString &id) const: returns the current value of an existing
object, which corresponds to its winning revision.

• QJsonObject conflicting() const: returns an overview of objects which have conflicting
revisions.

• void resolve_conflict(const QString &id = {}, const QString &revision = {}): re-
solves a conflict by choosing the winning revision. If no identifier is provided, all conflicts in
the chain will be resolved by choosing the currently winning revision. If a winning revision is
specified (and the identifier is not empty), the winning revision will be overridden.

• QStringList all_docs() const: returns a list of all objects’ identifiers in the chain.

• QString root() const: returns the identifier of the root object.

• QString winning_revision(const QString &id) const: returns the winning revision of
the specified object.

• QString first_revision(const QString &id) const: returns the first revision of the spec-
ified object.

• QString parent_revision(const QString &id, const QString &rev) const: returns
the parent revision of the specified revision of an object.

• QStringList history_of(const QString &id, const QString &revision = {}) const:
returns the history of all revisions up to the specified one. If no revision is specified, the cur-
rently winning revision is considered.

• QString commit(const QString &author, const QString &description, unsigned int
pack_size_limit = 0): commits data and changes to the backend: this will create a new
block and possibly a new pack (if new content is produced). The author of the commit as well
as a description message can be specified. Furthermore, it is possible to limit the size of the
produced data packs by specifying a soft limit using the corresponding parameter.

• void reload(const QString &block = {}) const: reloads data from the backend stor-
age.

• void store(const QString &key, const QBuffer &data): stores arbitrary data on the
backend. This data is not tracked by the document chain, but can be used for attachments.

• QStringList data() const: retrieves all arbitrary data keys.

• void load(const QString &key, QBuffer &data) const: fetches arbitrary data into a
buffer.

• std::shared_ptr<QDocumentChain> branch(std::shared_ptr<docchain::Adapter> adapter):
branches a new chain which will use a different adapter. Branching will invoke a meld to repli-
cate the current state into the new chain.

ISIN Technical Report 2021-1 The Document Chain

26 4 THE DOCUMENT CHAIN AS A FRAMEWORK

• std::shared_ptr<const DocumentChain> branch_readonly(std::shared_ptr<Adapter>
adapter, const std::string &block = {}) const: branches a new read-only chain which
will use a different adapter. Branching will invoke a meld to replicate the current state into the
new chain. It is possible to retrieve the state of the chain at a specific commit point.

• std::shared_ptr<const QDocumentChain> branch_view(const QString &block = {})
const: branches a new read-only chain. It is possible to retrieve the state of the chain at a
specific commit point.

• std::shared_ptr<QDocumentChain> spin_off(std::shared_ptr<docchain::Adapter> adapter):
branches from the current document chain state without keeping the chain history of the
source.

• QStringList created_since(const DocumentChain& other) const: returns a list of the
identifiers of the object that have been created (and are therefore not present in the other
chain).

• QStringList updated_since(const DocumentChain& other) const: returns a list of the
identifiers of the object that have been modified since the other chain.

• QStringList deleted_since(const DocumentChain& other) const: returns a list of the
identifiers of the object that have been deleted since the other chain.

• bool uncommitted() const: returns true if the document chain contains uncommitted changes.

• QJsonArray staged() const: returns a description of all uncommitted changes.

• QJsonObject stage() const: returns a snapshot of all uncommitted changes.

• void replay_stage(const QJsonObject &snapshot, bool overwrite): replays a snap-
shot of all uncommitted changes. If overwrite is set to true, the snapshot will overwrite the
existing state.

• QJsonArray state() const: returns a list of loaded blocks.

• QJsonArray safe_state() const: returns a list of loaded blocks that have all referenced
packs available.

• void mold(const QJsonArray &chainstate): filters out all blocks but the one included in
the chainstate array.

• void reset(const QString &block = {}) const): discards all uncommitted changes and
restores the last committed state of the chain. If a block is specified the specific commit point
is retrieved.

• void discard()): discards all uncommitted changes.

• bool contains(const QString &id) const: check if an object exists in the chain.

• QStringList chain(const QString &block = {}) const: returns list of blocks (history)
up to the specified one.

• QJsonObject check_compatibility(const DocumentChain &target) const: checks whether
the chains are compatible (for a replication or meld).

The Document Chain

27

Figure 17: The Document Chain - Replication

• void undiff(): replaces (by updating) differential orderings with full orderings.

• bool check_missing_data() const: check whether all pack dependencies are met.

• QJsonObject check() const: check the consistency of the chain.

• static QString sync_lib_version() noexcept: returns the version string of the underly-
ing library.

• std::shared_ptr<docchain::Adapter> adapter() const: returns the adapter used by
the chain.

• QJsonObject config() const: returns the configuration used by the chain.

4.3 Replication vs Melding

The Document Chain API provides two different ways of synchronizing changes made on one
replica, namely replication and melding. Replication is performed at the revision tree level: the
changes made to revision trees observed on a source chain are copied to a target chain. Those
changes appear as an update on the chain, thus they need to be committed. On the other hand,
melding is performed at the block level: blocks, packs and indices found on the source chain that are
missing on the remote chain are copied. The resulting data will be the same in both cases, however
only melding preserves the commit history and information from the source chain.
As an example, consider the chains shown in Figure 17 and 18. A chain consisting of a block X
initially contains two objects doc1 and doc2. The chain is subsequently forked, so as to create two
replicas which are independently updated. New objects are created on both branches of the chain
and finally those chains are brought togheter either by replicating the contents (Figure 17) or by
melding them (Figure 18). With replication, the newly committed block (X+2) only references X+1 as
a parent: all changes from the B branch are simply integrated into the other branch. On the contrary,
with melding block X+2 references both X+1 and Y+1, meaning that the origin of all the changes
(i.e. the corresponding commits) is preserved.

4.3.1 Collaborative application design

Using the Document Chain a single-user application can be seamlessly converted into a collabora-
tive application by implementing some additional operations to serialize and deserialize the existing
data model into a JSON document. As shown in Figure 19, it is possible to employ different Doc-
ument Chains (in the example, a shared one and local ones) to exchange modifications made by

ISIN Technical Report 2021-1 The Document Chain

28 6 EVALUATION

Figure 18: The Document Chain - Melding

different users. The serialized data from the model is compared against the local chain in order to
determine the changeset which is subsequently committed to the local chain. The push changes
operation merges changes from the local Document Chain into the shared one, whereas the pull
changes operation merges changes from the shared chain into the local one. Finally, the local chain
can be read and deserialized in order to obtain an updated model.
As replication does not enforce any specific communication channel, a particularly cost-effective
way to exchange updates between multiple clients/participants is through cloud-based file sharing
platforms. As discussed in the introduction, the use of such infrastructure can reduce the overall
maintenance costs for the developer while ensuring that data is stored according to the end-user
requirements. Since Document Chains are based on immutable elements (which are identified by
the hash value of their contents) it is easy to implement a caching mechanism to reduce network
traffic in remote replication.

5 Further improvements

The design of the document chain, as presented in the previous section, leaves room for further im-
provements. A significant reduction to the storage space can be achieved by storing only differential
updates to ordering documents (which would normally store the full sequence of document identi-
fiers). Update record blocks could also be digitally signed to add accountability and non-repudiability.

6 Evaluation

To evaluate the proposed approach we conducted several experiments targeted at measuring the
space overhead and the overall performance. In this section we discuss a synthetic benchmark
which simulates a collaborative editing session of a shared text document.
We first present an evaluation discussed in [9], with an experiment derived from [10], in order to
determine the storage overhead, the changeset size, the maximum resident set size, and the time
required to reconstruct the full state from all changesets. We compare the obtained results with
automerge [5], which was chosen because it is a well-known CRDT which natively supports JSON
data and exhibits some commonality with our solution. We created a setup which simulates subse-
quent edits to a JSON document which contains an array of financial transactions: the first version
(denoted as V1) is listed in Listing 1. The root object contains a data field, which corresponds to a
sub-object containing an array of transactions. Each transaction is defined by an identifier (the "_id"
field), a string representing a currency, a numerical value, and two strings which stand for the sender

The Document Chain

29

Figure 19: The Document Chain - Collaborative Application Architecture

ISIN Technical Report 2021-1 The Document Chain

30 6 EVALUATION

and recipient accounts. Furthermore, the root object also contains a filed named "info" which maps
to an object with a transaction counter (mapped to the "txcount" field).
{"data": { "transactions ":[{" _id ":"391...32" ,

"currency ": "EUR",
"value": 22412,
"from": "13465 -45566",
"to": "34655 -67554"

}]}, "info": {" txcount ": 1}}

Listing 1: Sample JSON document

The evaluation is comprised of 1000 steps, each comprising several edits to the data structure.
More specifically, document version VN is modified to produce a new version (denoted as VN+1) by
performing the following changes: first, a new object is added to the transactions array, and second,
the contents value of the currency field an existing object are replaced with new data (specifically
the "EUR" string). Moreover the value of the field txcount is updated to reflect the size (number of
elements) of the transactions array. With automerge, new versions of the document are generated
by passing the required update operations to the change method (since it is an operation-based
CRDT): each changeset in then saved to a separate file; on the contrary, with the Document Chain
the new version of the whole document is processed by the update logic, which will automatically
devise the corresponding changeset. Moreover, each step entails a commit of the chain, which relies
on the filesystem adapter to produce three files for each step (a revision update record block, a data
pack and the corresponding index). To evaluate the impact of the hashing function used to generate
revision strings inside the chain, we consider both SHA256 and xxHash. To keep the evaluation
scenario as simple as possible, digital signatures are omitted. All tests are performed on an AMD
PhenomTM II X4 965 processor with 16 GiB of RAM running Ubuntu 20.10. For automerge, version
0.14.2 running on Node.js version 12.18.2 is used.

6.1 Storage overhead

The first measurement concerns the overhead due to the additional information required for main-
taining a history of all updates made to the data structure. Concerning the Document Chain we
consider the total size of the data, which comprises pack files, the corresponding indices and the
revision update blocks; for automerge we compute the cumulative size of all changesets obtained
using the getChanges method (which returns an array of operations to be applied to version VN in
order to obtain VN+1).
As shown in Figure 20 the Document Chain approach results in a comparable overhead to au-
tomerge, nonetheless depending on the hashing algorithm used for generating revision strings, a
slight difference is observable. It should be noted that automerge records changes made to single
fields whereas the Document Chain stores full JSON objects for each revision: the former might
therefore produce better results for small changes in large objects, whereas the latter ensures the
inner consistency of each object. The size of the input document is reported as Full state: since
both CRDTs record and enable access to the whole history of the document, we report both the
size of a single version of as single full state as well as the cumulative size of all previous states. In
this regard, both CRDTs allow for maintaining the full history of a document with considerably less
storage overhead.

6.2 Size of the changeset

Changesets group a series of updates that need to be applied to version VN in order to obtain version
VN+1. In a distributed scenario the size of a changeset determines the amount of data that needs to

The Document Chain

31

Figure 20: Storage Overhead

be exchanged between participants in order to update their current state.
As can be observed in Figure 21, both CRDTs provide an efficient way of replicating changes, with
a resulting cost which is orders of magnitude less than transmitting the full state at each update.

6.3 Maximum resident set size (RSS) in full state reconstruction

Manipulating large JSON data structures can be expensive in terms of memory, in particular on
resource constrained devices. Accordingly we measure the Maximum resident set size (RSS) during
each experiment to evaluate the memory used by the CRDTs while reconstructing the full state
based on the changesets available at each step. For the Document Chain, measurements have been
obtained using the time command, whereas for automerge we employ process.memoryUsage().rss.
As shown in Figure 22, automerge is penalized by the fact of being a Javascript library running on
Node.js, whereas the Document Chain is a native library written in C/C++.

6.4 Full state reconstruction time

Reconstructing the full state from the available changeset is also a time consuming. For the Docu-
ment Chain, we evaluate the time required by this operation using the time command, whereas for
automerge we employ Date.now() to obtain the current time before and after the process (in order
to avoid taking into consideration the initialization time of the Node.js runtime).
As shown in Figure 23, automerge takes considerably more time compared to both Document Chain
scenarios, despite the fact that the former has to read one-third of the files compared to the latter.

ISIN Technical Report 2021-1 The Document Chain

32 6 EVALUATION

Figure 21: Size of the changeset

Figure 22: Maximum resident set size (RSS)

The Document Chain

33

Figure 23: Full state reconstruction time

7 Conclusion

In this technical report, we presented the concept of Document Chain, which implements a JSON-
based CRDT suitable for building collaborative applications or integrating collaboration features into
existing applications. The proposed approach does not require synchronous communication be-
tween participants and can therefore exploit existing cloud-based file sharing platforms to exchange
updates, such as Dropbox. Each partipant can modify its own replica of the document indepen-
dently; since the replication process is based on multi-version concurrency control (MVCC) the Doc-
ument Chain ensures non-destructive conflict management. In comparison with similar solutions
such as Automerge, the Document Chain implements a simpler programming interface which does
not require explicit updates to the documents in order to record modifications made to the document.

References

[1] Mark Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-Free Replicated
Data Types. Lecture Notes in Computer Science - LNCS. 6976. 386-400, 2011

[2] Mihai Letia, Nuno Preguiça, and Marc Shapiro. Consistency without concurrency control in
large, dynamic systems. SIGOPS Oper. Syst. Rev. 44, 2 (April 2010), 29–34, 2010

[3] Carlos Baquero, Paulo Sérgio Almeida, and Ali Shoker. Making Operation-Based CRDTs
Operation-Based. AIS 2014: Distributed Applications and Interoperable Systems pp 126-140,
2014

ISIN Technical Report 2021-1 The Document Chain

34 REFERENCES

[4] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. Efficient state-based CRDTs by delta-
mutation. In International Conference on Networked Systems, NETYS 2015, pages 62–76.
Springer LNCS volume 9466, May 2015.

[5] Martin Kleppmann and Alastair R Beresford. A conflict-free replicated JSON datatype. IEEE
Transactions on Parallel and Distributed Systems, 28(10):2733–2746, April 2017.

[6] Pascal Grosch, Roman Krafft, Marcel Wölki, and Annette Bieniusa. AutoCouch: A JSON CRDT
framework. In 7th Workshop on Principles and Practice of Consistency for Distributed Data,
PaPoC 2020. ACM, April 2020.

[7] CouchDB Team, CouchDB 2.0 Reference Manual, Samurai Media Limited. 2015.

[8] PouchDB, https://pouchdb.com/

[9] Amos Brocco, (2021). The Document Chain: a Delta CRDT framework for arbitrary JSON
dataThe Document Chain: a Delta CRDT framework for arbitrary JSON data SEBD.

[10] Amos Brocco, Patrick Ceppi, and Lorenzo Sinigaglia, (2020). libJoTS: JSON That Syncs!
SEBD.

[11] Solid Technical Reports, 2021-02-07, https://solidproject.org/TR/

[12] Shapiro, M., Preguica, N., Baquero, C., Zawirski, M.: A comprehensive study of Convergent
and Commutative Replicated Data Types. Rapp. Rech. 7506, InstitutNational de la Recherche
en Informatique et Automatique (INRIA), Rocquencourt,France. 2011

[13] Marc Shapiro, Nuno Preguiça, Carlos Baquero, Marek Zawirski. Convergent and Commuta-
tive Replicated Data Types. Bulletin- European Association for Theoretical Computer Science,
European Association for Theoretical Computer Science; 2011, pp.67-88.

[14] Almeida, Paulo Sérgio, Ali Shoker, and Carlos Baquero. "Delta state replicated data types."
Journal of Parallel and Distributed Computing 111 (2018): 162-173.

The Document Chain

