
Community-Aware Scheduling Protocol for Grids
Ye Huang∗, Amos Brocco∗, Nik Bessis†, Pierre Kuonen‡, and Beat Hirsbrunner∗

∗Department of Informatics, University of Fribourg, Switzerland
Email: {ye.huang, amos.brocco, beat.hirsbrunner}@unifr.ch

†Department of Computer Science and Technology, University of Bedfordshire, UK
Email: nik.bessis@beds.ac.uk

‡Department of Information and Communication Technologies,
University of Applied Sciences Western Switzerland (Fribourg)

Email: pierre.kuonen@hefr.ch

Abstract—Much work has been done to exploit the effectiveness
and efficiency of job scheduling upon distributed computational
resources. With regard to existing resource topology and ad-
ministrative constraints, scheduling approaches are designed for
different hierarchic layers, for example, scheduling for job queues
of local resource management systems (local scheduling), and
scheduling for job queues of high level schedulers (also known as
meta-schedulers or grid schedulers). Such scheduling approaches
mainly focus on optimizing job queues of the hosting nodes,
which are interconnected with computational resources directly
or indirectly. In the real world (or in a community-based grid), a
grid is comprised of nodes with different computing power and
scheduling preferences, which in turn, raise a notable opportunity
that is to exploit and optimize the process of job sharing
between reachable grid nodes via improving the job allocation
and efficiency ratio.

In our work, we introduce a novel scheduling protocol which
dedicates to disseminate scheduling events happened on each
involving node to as many candidate nodes as possible. By means
of the proposed protocol, scheduling process of each received
job consists of several phases with awareness of grid volatility,
and dynamic scheduling and rescheduling is allowed as long
as the job execution has not started yet. To this end, a set
of concerning algorithms and processing steps are described.
A prototype of our scheduling approach is being implemented
within the SmartGRID project.

Index Terms—Community-Aware Scheduling Protocol, CASP,
Grid, Scheduling, SmartGRID, MaGate

I. MOTIVATION

The Grid concept, first introduced in [1] does not cease to
gain in importance during the last years as a medium-term
challenge of what is often called the ”Computing Internet”.
The main goal of grid computing is to provide high perfor-
mance computing facilities over large computers networks. In
contradiction to conventional distributed computing systems
that are confined in controlled environment with finite and
stable resources, grid computing environments are inherently
more open as computing elements can join or leave the
system at any point in time. This characteristic makes hard to
maintain consistent information about the overall state of the
system. Moreover, its impractical to maintain information in
a centralized way, and the outdated information may thereby
lead to wrong scheduling decisions as well. In this context,
scheduling policies for achieving good resource management

decisions in the presence of such unpredictability become an
essential part of a computational grid.

The scheduling system is mainly categorized into two types:
the local scheduler and the grid scheduler. The local scheduler
(e.g., [2] [3]) is working in local computational environment,
which normally stands for reliable and fast connection, uni-
form environment, and full control of homogeneous resources.
Regarding the research on local scheduler is long time before
the proposal of grid computing, addtional non-trivial issues
introduced by grid computing have to be addressed by com-
plementary components, namely the grid schedulers.

The conventional grid scheduler, also known as meta-
scheduler sometimes (e.g., [4] [5]), is responsible for or-
chestrating resources managed by diverse local schedulers
together, in order to bridge the gap between grid applications
and isolated local resource management systems. Both local
scheduler and a grid scheduler are crucial components for
grid computing because it determines the effectiveness and
efficiency of a grid system by identifying, characterizing,
discovering, selecting, and allocating the resources that are
best suited for each individual job.

Although some research work [6] [7] [8] [9] have started
to exploit the incentive benefited from cooperation amongst
multiple grid nodes, aforementioned solutions still have sev-
eral common constraints, including: (a) scheduling algorithms
mainly aim at optimizing the job queue of hosting grid node;
(b) the scope of grid system is assumed to be known a-priori.

With respect to existing solutions, a novel approach named
Community-Aware Scheduling Protocol (CASP) is introduced
in this work. The design principle of CASP is to provide
scheduling solution for the scope of overall grid (or reachable
grid community), instead of each single grid node. More pre-
cisely, as soon as an involving grid node receives a submitted
job from its end user, the CASP broadcasts submitted job
profile to the grid community for a lightweight and fast grid-
wide pre-scheduling. Additionally, the winner node of the pre-
scheduling can inform other remote nodes about local schedule
made for the assigned job before its execution; therefore, if
another node happens to be able to provide better solution
compared to the existing job schedule due to various reasons
such as node join or job cancellation, CASP dynamic (re-

2010 24th IEEE International Conference on Advanced Information Networking and Applications

1550-445X/10 $26.00 © 2010 IEEE

DOI 10.1109/AINA.2010.10

334

)scheduling process can help to achieve load balance with up-
to-date information under a decentralized and distributed grid
infrastructure.

The remainder of the paper is organized as follows: principle
of CASP is introduced in Section II, followed by a details
discussion in Section III. Section IV illustrates the planned
CASP implementation in a realistic project. Finally, Section V
presents conclusion of current work and some insights to
future development.

II. COMMUNITY-AWARE SCHEDULING PROTOCOL
PRINCIPLE

The basic idea of Community-Aware Scheduling Protocol
(CASP) is to make scheduling decisions upon grid community,
instead of isolated job queue on each grid node. The protocol
dedicates to spread the all involving scheduling events, e.g.,
job submission and job queue optimization, across the network
in order to reach as many candidate nodes as possible. Purpose
of the Community-Aware Scheduling Protocol is to serve the
entire grid community as a whole. The CASP is comprised of
two main phases:

1) Job Submission Phase: Grid users can submit jobs to
any nodes of the grid community. Each job is identified
by an UUID [10]. The initial job recipient, referred as the
initiator, issues a resource discovery across the grid overlay by
broadcasting a REQUEST message. A REQUEST contains
the profile of the resources required to carry out the job, an
estimated job running time referring to a grid-level accepted
computing power baseline, as well as additional job execution
constraints (such as Virtual Organization or geographic lim-
itations). The initiator then waits for a predefined timelapse
for incoming query replies.

A node receiving a REQUEST messages checks if the
required profile matches its own capability. Accordingly, it
computes an estimated completion time/cost based on actual
resources and current scheduling, and forwards this informa-
tion by means of an ACCEPT message.

It’s noteworthy that in case of failed REQUEST messages
dissemination by adopted information system due to various
reasons, such as network delay, profile non-matching, the
initiator node can still transfer the generated REQUEST
messages to its neighboring nodes, which are known due to
existing historical interaction [11] and weighted by means of
Critical Friendship [12]. Moreover, message broadcasting via
resource discovery systems and historical Critical Friendship
can be concurrently.

The initiator evaluates incoming ACCEPT responses, and
selects the best suited node (i.e. the node providing the least
time to completion or lowest execution fee). The latter is
assigned the job by means of an ASSIGN message, and is
referred to as the assignee.

2) Dynamic Rescheduling Phase: The assignee is respon-
sible to manage and execute the assigned job according to
its own scheduling mechanism and policy. Based on the
initiator’s offer selection mechanism, the assignee is the node
that provides the shortest time-to-completion or lowest cost

for that particular job. Nevertheless, availability of resource
on the grid and scheduling of jobs may change. This can be
either the result of new nodes connecting to the grid or existing
job cancelation. Thus, the assignee may not remain the best
solution.

Accordingly, while execution has not yet started, a number
of INFORM messages are sent over the network using a
low-overhead random walking protocol. INFORM messages’
content is similar to REQUEST messages, but their purpose is
to inform other nodes about the job’s current schedule on the
assignee node. More specifically, INFORM messages not only
contain the profile of the job, but also the estimated solution
on current assignee. A node will typically generate INFORM
messages for several jobs that are at the end of the scheduling
queue, and thus have larger waiting times that open up more
possibilities for dynamic rescheduling.

A node receiving an INFORM message checks if it matches
its up-to-date profile [13]. Furthermore, it evaluates an es-
timated value (e.g. completion time) according to its own
schedule. If such estimation leads to a better result than the
INFORM message, the node will send an ACCEPT message
to the node that currently manages the job. Threshold are put
in place to determine if the re-assign is worth (i.e. do not
accept if the improvement is just few better).

The current assignee receiving the message may then choose
to re-assign the job by means of an ASSIGN message. To
enable tracking of jobs for the purpose of node crash tolerance
and neighboring node weighting, each re-assignment is logged
and notified to the initiator node.

III. COMMUNITY-AWARE SCHEDULING PROTOCOL
IMPLEMENTATION

A comprehensive description of the Community-Aware
Scheduling Protocol is illustrated as below:

A. Job Dispatch and Evaluation

As mentioned above, in contrast to conventional grid, job
submission information on each initiator node will be analyzed
in order to generate a corresponding REQUEST message,
which contains job profile, estimated processing time, resource
requirement, and a set of additional constraints. The generated
REQUEST messages are then sent to some remote nodes
by means of the adopted underly systems, as shown in
algorithm 1. Either an efficient resource discovery system or a
cached neighboring node list with up-to-date information can
fulfill the target. Regarding the volatility of grid, the employed
message dispatching system is expected to be lightweight, fast,
and being able to reach as many remote nodes as possible. A
recommended solution will be introduced in section IV.

Afterward, the initiator node waits for a while, and evaluates
received ACCEPT messages in order to select the best suited
node.

Definition 1 (Release Time): The time when the initiator
node stops receiving newly arrival ACCEPT messages and
turns to job assignment is called release time rj ,

335

Algorithm 1 REQUEST message generation
Require: all remote nodes discovery solutions: allns;

each single remote nodes discovery solution: ns;
each returned remote node: node;
profile of the submitted job: jobj ;
generated REQUEST message based on jobj : request;

Require: frequest(jobj): local formula of generating RE-
QUEST message based on jobj ;

1: request = frequest(jobj)
2: for all ns ∈ allns do
3: for all node ∈ ns do
4: send request to node
5: end for
6: end for

rj =

{
sj + α(dj − cij) if pij > 0,
sj + δ(dj − pj) if pij = 0.

(1)

where jobj is submitted at time sj , estimated job running
time referring to a grid-level accepted computing power base-
line is pj , and the predefined job due time, which means when
the job is expected to be delivered back to job owner, is dj .
If computing power of the initiator node matches resource
requirement of jobj , then jobj’s estimated processing time
on initiator node is pij , and estimated completion time is cij .
α, δ ∈ (0, 1) are coefficients used to adjust acceptable delay by
the initiator node. Larger α and δ mean more time is allowed
for each Job Submission Phase, but poor system flexibility and
robustness might be incurred.

As illustrated by algorithm 2, once a node has received a
REQUEST message generated for jobj , it retrieves the objec-
tive objj from the REQUEST message. If such objj could be
recognized by local policy, recipient node then evaluates the
estimated value according to its local resource characteristic
and status. The objective of jobj defined within REQUEST
message can be either a simple value (e.g., estimated com-
pletion time), or a multiple one (e.g., estimated completion
time as the primary objective, and estimated execution cost
as the secondary one). After that, if the estimated result for
job objective can be determined, a ACCEPT message will
be generated and sent back to the initator node of job jobj .
Regarding the stage of Job Submission Phase, no existing
schedules will be obtained from the REQUEST message, it
will be discussed in subsection III-B.

As presented in algorithm 3, the initiator node of jobj
checks the received ACCEPT messages at release time rj ,
and selects the best suited remote based on a set of necessary
local evaluation formulas, including job objective fulfillment,
node power, weight of remote node based on previous inter-
action [11] [12], etc. ASSIGN message will be generated and
sent to the selected best node, aka. the assignee node, together
with job jobj . Only one remote node can receive the generated
ASSIGN message, and future incoming ACCEPT messages
after time rj will be ignored by the initiator node.

Algorithm 2 ACCEPT message generation
Require: received requesting message: request

(request ∈ { REQUEST message, INFORM message});
recognizable objective repository: repository;
retrieved objective array from request: objectives;
requesting node: requester
(requester ∈ { initiator node, assignee node});
final estimation results: results;
each retrieved objective: obj;
each calculated estimation: res;
existing schedule list: schedules;
each existing schedule: schedule;
existing threshold for each schedule: threshold;
ACCEPT message for sending to requester node: accept;

Require: festimation(obj): local formula of getting estimated
value on a recognizable objective;
faccept(results): local formula of generating ACCEPT
message based on estimation results;

1: requester ← request
2: objectives← request
3: schedule← request
4: for all obj ∈ objectives do
5: if obj ∈ repository then
6: res = festimation(obj)
7: results += res
8: end if
9: end for

10: if results 6= ∅ then
11: if schedules 6= ∅ then
12: for all res ∈ results do
13: if res ∈ schedules then
14: schedule← schedules
15: threshold = fthreshold(schedule)
16: if res - threshold ≤ 0 then
17: exit
18: end if
19: end if
20: end for
21: end if
22: accept = faccept(results)
23: send accept to requester
24: end if

Once the assignee node receives the transfered ASSIGN
message, it retrieves the attached job and puts it into its local
job queue. It is noteworthy that decentralized nodes normally
are using different scheduling algorithms and policies, e.g.,
FCFS, Easy Backfilling, Flexible Backfilling, etc. In this case,
how to put the assigned job jobj into local queue relies on
the preference of different nodes.

B. Dynamic Scheduling and Rescheduling

The work illustrated in subsection III-A describes how a job
can be submitted to the entire grid, or at least part of the grid.

336

Algorithm 3 ASSIGN message generation
Require: job to assign: jobj ;

all objectives of jobj : objectives;
each received ACCEPT message: acceptMsg;
all received ACCEPT messages: acceptMsgs;
answered objective of each received ACCEPT message:
answeredObj;
estimated value of each answered objective within each
ACCEPT message: estimatedRes;
calculated weight for each
{answeredObj, estimatedRes} pair: weight;
all approved candidate remote nodes, paired with the
calculated weight: candidates;
selected best suited remote node: assignee;
generated ASSIGN message: assignMsg;

Require: feva(answeredObj, estimatedRes): local formula
of evaluating specific {objective, estimated result} pair;
if the estimated value for given objective is acceptable,
return a weight value larger than 0; otherwise, return -1;
forder(candidates): local formula for searching the best
suited acceptMsg according to paired largest weight
value, as well as historical interaction records;
fassignMsg: local formula of generating ASSIGN mes-
sage based on job profile jobj ;

1: objectives← jobj
2: for all acceptMsg ∈ acceptMsgs do
3: for all {answeredObj, estimatedRes} ∈ acceptMsg

do
4: weight = 0
5: if (answeredObj ∈ objectives)

& (feva(answeredObj, estimatedRes) > 0) then
6: weight += feva(answeredObj, estimatedRes)
7: else
8: continue

(abandon this {answeredObj, estimatedRes})
9: end if

10: candidates += {acceptMsg,weight}
11: end for
12: end for
13: assignee = forder(candidates)
14: assignMsg = fassign(jobj)
15: send assignMsg to assignee

It can be comprehended as a lightweight pre-scheduling phase
with very limited information and scheduling time. Afterward,
submitted job will be managed by the assignee node under
specific local scheduling policies.

Regarding the infrastructure of grid is rather volatile due to
various reasons, such as node join, node leave and resource
overloaded, the selected assignee node in Job Submission
Phase may no longer the best suited node through time for
job jobj . Therefore, a dynamic scheduling and rescheduling
procedure through time with up-to-date information is sup-
posed to increase the effectiveness and efficiency of previous

scheduling decisions.
Each node that follows the Community-Aware Scheduling

Protocol is supposed to check its waiting job queue periodi-
cally (algorithm 4). Jobs which are considered can not be well
served (for example, jobs have a long wait-for-execution time)
by local node will be picked up, and a INFORM message will
be generated for each selected job. Such generated INFORM
messages will be sent over the network by means of employed
information system for the purpose of seeking better candidate
nodes. The INFORM message contains both job profile and
current schedule on the assignee node, so that recipient nodes
are able to determine whether estimated solution on their local
resource can be better than the assignee node. Threshold on
specific objectives will also be put into the INFORM message
to prevent unnecessary job re-assignment and system shaking.
Furthermore, to ensure a fair scheduling process, jobs been
visited for generating INFORM message will be ignored
next time. Once INFORM messages have been sent out, the
assignee node waits for a while, which can be calculated
using the similar formula in Definition 1 with self-defined
coefficients α and δ, and checks the returned ACCEPT
messages afterward.

The recipient nodes of INFORM messages determine their
responses using the same process discussed in algorithm 2. It
is noteworthy that since each INFORM message contains the
estimated schedules based on job profile and assignee node
capability, responding nodes of INFORM messages will be
asked to compare their results with existing schedules. The
ACCEPT messages won’t be sent back to assignee node
unless enough benefit can be obtained, i.e., the predefined
threshold on estimated objective values have to be achieved.

After certain period of waiting, current assignee node
checks the returned ACCEPT messages for the targeted jobs,
selects the best candidates according to algorithm 3, and sends
generated ASSIGN messages together with the referred jobs
to the selected nodes, i.e., the new assignee nodes.

Finally, all successful assignment/re-assignment of jobj will
trigger a notification message to jobj’s initiator node, so that
weight of remote nodes on the initiator node can be kept up-
to-date.

C. Reference Scenario
Figure 1 illustrates a typical working scenario of

Community-Aware Scheduling Protocol. Assuming that a grid
is comprised of interconnected Nodei, i ∈ {A,B,C, ...}, Job
X is submitted to Node A. The Community-Aware Scheduling
Protocol then leads to the following phases and steps for job
assignment and dynamic scheduling:

1) Job Submission Phase:
Step 1: Job X (with primary objective as completion time)is

submitted to Node A.
Step 2: Node A receiving the job submission is referred as

to the initiator. It generates a REQUEST message
according to the retrieved requirement of Job X, and
broadcasts such message to the grid by the employed
lightweight decentralized information system.

337

Node
X

Node
Y

Node X fits the requirement of Job X

Node Y doesn't fitt the requirement of Job X

Node
A

Node
C

Node
B

Node
D

Node
F

Node
G

Node
I

Job X submission

Step 1
Step 2,3,6

Step 4

Other
nodes

Other
nodes

Node
E

Node
H

a,b,c Message generated according to
certain behavior step

Step
4,5,10,11,13,14,15

Step
4,5,7,8,9,12,13

Step 4,5

Step 4

Step 4,10

2

2, 6

2

2, 9

2

2

5, 13

5

Existing link before Job X submission

Dynamic created logic link through job
scheduling

9

9

911, 14 11

Step 10

Step 10, 11

12

5, 13, 14, 15
Fig. 1. Community-Aware Scheduling Protocol Reference Scenario

Step 3: The initiator Node A then waits for a predefined
retardation, which is calculated according to the
estimated processing time and due date of Job X.

Step 4: Nodes receiving the broadcasted REQUEST mes-
sage (i.e. Node B, C, D, G, H, I) check if the the
required job profile can be matched by the local
resources.

Step 5: If yes, each candidate node (Node C, D, H) com-
putes an estimated completion time according to its
current scheduling and resource status, and delivers
the information by means of an ACCEPT message.

Step 6: The initiator Node A evaluates received ACCEPT
messages and selects the best candidate node based
on several parameters, such as the promised time to
complete, node weight due to historical interaction
records, etc. The selected node, referred as the as-
signee, is assigned the job by means of an ASSIGN
message. In our case, Node C is considered as the
best candidate and Job X is assigned.

2) Dynamic Rescheduling Phase:

Step 7: The assignee Node C takes the assigned Job X and
puts it into its local job queue.

Step 8: The assignee Node C periodically picks jobs from
its local job queue, which have large enough waiting
time and not been selected recently. Afterward, the
assignee Node C generates INFORM messages,

which contains both job profile and estimated com-
pletion time on the itself, for each selected jobs.
In our case, regarding Job X is just appended to
end of queue of Node C, a corresponding INFORM
message is also generated for Job X.

Step 9: The INFORM message for Job X is sent over the
network using the employed low-overhead walking
protocol. As illustrated in Figure 1, Node E, D, F, I
have received such message.

Step 10: A node receiving aforementioned INFORM mes-
sage (Node E, D, F, I) checks if the local resource
and scheduling status could satisfy the profiled job;
furthermore, it also evaluates whether the estimated
completion time on local resource is worthy enough
(i.e. the threshold mentioned in the INFORM mes-
sage can be fulfilled).

Step 11:If the evaluation result from above step is positive,
an ACCEPT message will be generated and deliv-
ered to the assignee Node C.

Step 12: The assignee Node C evaluates the received AC-
CEPT messages according to the message content
and node weight, which is calculated based on his-
torical interaction records. In our case, we assume
that Node C already has some historical collaboration
records on Node D and Node F, which has revealed
that Node F is rather unstable and used to halt during

338

Algorithm 4 INFORM message generation
Require: local job queue of assignee node: jobQueue;

each job in assignee node’s local queue: job;
job’s existing schedule on assignee node: schedules;
generated INFORM message: inform;
all generated INFORM messages: inform queue;
thresholds for each existing schedules: thresholds;
all remote nodes discovery solutions: allns;
each remote nodes discovery solution: ns;
each discovered remote node: node;

Require: freassign(job): local formula to determine whether
a job needs to be reassigned;
fvisitable(job): local formula to check if a job has already
been tried for reassign last time; if yes, then such a job
will be skipped this time; otherwise, continue the dynamic
scheduling process
fschedule(job): fetch existing schedules of a job on the
assignee node, i.e., according to local resource, the esti-
mated values of job objectives;
fthreshold(schedules): local formula of calculating
threshold for each existing schedule;
finform(job, schedules, thresholds): local formula of
generating INFORM message based on job profile,
fetched existing schedule, and calculated schedule thresh-
old;
fdisable nextvisit(job): mark a job cannot be reassigned
next time;
fenable nextvisit(job): mark a job can be reassigned next
time;

1: for all job ∈ jobQueue do
2: if freassign(job) then
3: if fvisitable(job) then
4: schedules = fschedule(job)
5: thresholds = fthreshold(schedules)
6: inform = finform(job, schedules, thresholds)
7: inform queue += inform
8: fdisable nextvisit(job)
9: else

10: fenable nextvisit(job)
11: end if
12: end if
13: end for
14: for all inform ∈ inform queue do
15: for all ns ∈ allns do
16: for all node ∈ ns do
17: send inform to node
18: end for
19: end for
20: end for
21:

nights; therefore, although both Node D and Node
F can bring up the job completion time (no big
difference on completion time is assumed), Node D
is selected and Job X is re-assigned by means of an
ASSIGN message.

Step 13:To enable tracking of jobs for the purpose of node
crash tolerance, each re-assignment is logged and
notified to the initiator Node A.

Step 14:To enable node weighting for future scheduling, job
completion status is sent back to the original assignee
Node C and initiator Node A.

Step 15: The final job execution result is sent back to the
initiator Node A.

IV. COMMUNITY-AWARE SCHEDULING IN SMARTGRID
To evaluate the idea of Community-Aware Scheduling Pro-

tocol, a prototype is being implemented under an ongoing grid
scheduling framework named the SmartGRID [14] [15].

A. SmartGRID Framework

SmartGRID is a generic and modular framework that sup-
ports intelligent and interoperable grid resource management
using swarm intelligence algorithms. SmartGRID is structured
as a loosely coupled architecture, which is comprised of two
layers and one internal interface, as shown in Figure 2.

Smart
Resource
Management
Layer

Smart
Signaling
Layer

SmartGRID
Framework

Data
Warehouse
Interface

Fig. 2. SmartGRID architecture overview

1) Smart Resource Management Layer (SRML): SRML is
responsible for grid level dynamic scheduling and interoper-
ation serving grid applications with dynamically discovered
computing resources. SRML is composed of all the engaged
MaGates schedulers [16] [17]. Each participating MaGate
shares the received jobs with other schedulers of the same grid
community, which are normally managed under different ad-
ministrative constraints and policies. Moreover, a set of other
relevant issues are also targeted, such as utilizing dynamic
resource discovery service and open structured for cooperating
with external grid components. In order to address different
purposes within an uniform and loosely coupled architecture,
the MaGate scheduler is modular designed, as illustrated in
Figure 3:

• the Kernel Module is responsible for MaGate self-
management and addressing of internal events;

• the Community Module tackles the interoperation with
external schedulers;

339

• the LRM Module performs job allocation and manage-
ment on Local Resource Management systems (LRM);

• the External Module interacts with external grid services
for additional functionalities;

• the Interface Module manages the interface for accepting
job submission from various local invokers, and delivers
the results back.

Co
m

m
un

ity

M
od

ul
e

LRM Module

SAGA-I DRMAA-I

Res. Discovery

Res. Monitoring

Scheduling Policy

Ex
te

rn
al

M

od
ul

e

Data Storage

Community Monitor

Input Responser

Output Responser

Input Requester

Output Requester others

Interface Module

WS-I CL-I APP-I SIM-I

Kernel Module

Module Controller

MaGate Monitor

Match Maker

others

MaGate

SIM-I

Fig. 3. MaGate modular architecture

2) The Smart Signaling Layer (SSL): SSL represents the
interface from and to the network of the SmartGRID frame-
work, and provides information about the availability of re-
sources on other nodes, as well as their status. The SSL hides
the complexity and instability of the underlying network by
offering reliable services based on distributed ant algorithms.
Ants are defined as lightweight mobile agents traveling across
the network, collecting information on each visited node.
A middleware named Solenopsis [18] is developed to run
each ant node, providing an environment for the execution
of ant colony algorithms, specially the BlåtAnt collaborative
ant algorithm [19], [20].

B. Community-Aware Scheduling in SmartGRID

To implement Community-Aware Scheduling Protocol
within the context of SmartGRID, the MaGate schedulers of
SRML are responsible for making scheduling decisions, while
Ant Nests of SSL are in charge of remote nodes discovery and
messages broadcasting.

1) Implementation within SRML: Each MaGate scheduler
of SRML needs to implement following services and inter-
faces, which are grouped into corresponding MaGate modules:

Interface Module
• receiving job submissions from end users.
• retrieving and validating job profile.
Kernel Module
• generating REQUEST messages based on job profiles.
• transferring generated REQUEST messages to the Com-

munity Module and External Module.
• calculating received REQUEST messages and generating

ACCEPT messages if necessary.

• transferring generated ACCEPT messages to the Com-
munity Module.

• determining the best candidate node for specific jobs
according to the received ACCEPT messages, and gen-
erating corresponding ASSIGN messages.

• transferring generated ASSIGN messages to the Com-
munity Module.

• picking up jobs that cannot be well served by local
resource, and generating INFORM messages.

• transferring generated INFORM messages to the Com-
munity Module and External Module.

• evaluating received INFORM messages and generating
ACCEPT messages if necessary.

Community Module
• sending locally generated REQUEST message to known

neighboring nodes, e.g. critical friend nodes [12].
• sending locally generated INFORM messages to known

neighboring nodes.
• collecting received REQUEST messages and transferring

them to the Kernel Module.
• collecting received INFORM messages and transferring

them to the Kernel Module.
• collecting received ACCEPT messages and transferring

them to the Kernel Module.
• sending locally generated ASSIGN messages to remote

nodes for job delegation.
• sending locally generated ACCEPT messages to remote

nodes.
External Module
• broadcasting generated REQUEST messages over the

network via employed resource discovery system, i.e.,
Ant-based Smart Signaling Layer (SSL).

• broadcasting generated INFORM messages over the net-
work via employed resource discovery system.

• receiving REQUEST messages from SSL and transfer
them to the Kernel Module.

• receiving INFORM messages from SSL and transfer
them to the Kernel Module.

2) Implementation within SSL: Similarly, each Ant Nest
of the SSL is also supposed to provide a set of supports,
including:

• broadcasting transfered REQUEST messages from the
Smart Resource Management Layer (SRML).

• broadcasting transfered INFORM messages from the
SRML.

• collecting received REQUEST messages and transferring
them to the Community Module of the interconnected
SRML MaGate scheduler.

• collecting received INFORM messages and transferring
them to the Community Module of the interconnected
MaGate scheduler.

Moreover, regarding that each individual MaGate scheduler
may use different scheduling policies, all local formulas men-
tioned in algorithm 1, 2, 3, and 4 need to be implemented
according to adopted local polices.

340

V. CONCLUSION AND FUTURE WORK

The paper presents a novel scheduling approach named
the Community-Aware Scheduling Protocol (CASP), which
is inspired by the motivation of enable grid scheduling for
the scope of the overall grid, instead of each single node.
In contradiction to conventional grid scheduling solutions, the
CASP is supposed to broadcast all relevant scheduling events
to as many candidate remote nodes as possible, including
job submission, job scheduled information, etc. Moreover,
the CASP enables the possibility of dynamic (re-)scheduling
in order to make full use of grid characteristics such as
instantaneity and volatility.

The CASP is comprised of two phases: the Job Submission
Phase and the Dynamic Rescheduling Phase. The Job Submis-
sion Phase is responsible for broadcasting job submission to
the grid, and as soon as the best candidate has been selected,
the submitted job will be assigned to the so called assignee
node.

The Dynamic Rescheduling Phase is in charge of monitoring
jobs that can not be well served on each grid node, informing
local schedules made for those jobs to other remote nodes, and
enabling job rescheduling if better offer can be discovered.

The Community-Aware Scheduling Protocol is being im-
plemented into an ongoing grid project named SmartGRID.
A prototype of SmartGRID scheduling layer has been imple-
mented [17], as well as an Ant-based information systems [18]
that can be used as message dissemination system employed
by the CASP. Besides, Grid Workload Archive [21] based
trace data will be utilized to simulate the expected behavior
of CASP in realistic grid environment.

Further more, regarding the trend that computational re-
sources are no longer hard to obtain due to technique evolu-
tion, especially the emerging resource virtualization and Cloud
Computing, the basic purpose of scheduling has been shifted
from finding expected resources for specific jobs (provision
centered) into finding/generating appropriate resources for spe-
cific jobs under certain cost and constraints (demand centered).
In this case, idea of job broadcasting and dynamically (re-
)scheduling introduced by the CASP proposes a potential
theoretical and practical direction in this field.

VI. ACKNOWLEDGMENTS

This research is mainly financially supported by the Swiss
Hasler Foundation in the framework of the “ManCom Initia-
tive”, project Nr. 2122, and partly supported by EU Marie
Curie Knowledge Transfer Programme.

REFERENCES

[1] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid:
Enabling Scalable Virtual Organizations. International Journal of High
Performance Computing Applications, 15(3):200, 2001.

[2] openPBS. http://www.openpbs.org/, 2009.
[3] LSF. http://www.platform.com/Products/platform-isf, 2009.
[4] E. Huedo, R.S. Montero, and I.M. Llorente. The GridWay framework

for adaptive scheduling and execution on grids. Scalable Computing:
Practice and Experience, 6(3):1–8, 2005.

[5] O. Waldrich, P. Wieder, and W. Ziegler. A meta-scheduling service for
co-allocating arbitrary types of resources. Lecture Notes in Computer
Science, 3911:782, 2006.

[6] V. Yarmolenko and R. Sakellariou. Towards increased expressiveness in
service level agreements. Concurrency and Computation: Practice and
Experience, 19(14), 2007.

[7] R. Ranjan, A. Harwood, R. Buyya, and A. Victoria. SLA-based coordi-
nated superscheduling scheme for computational Grids. In IEEE Inter-
national Conference on Cluster Computing (Cluster 2006), Barcelona,
Spain, pages 1–8. Citeseer, 2006.

[8] C. Grimme, J. Lepping, and A. Papaspyrou. Prospects of collaboration
between compute providers by means of job interchange. Lecture Notes
in Computer Science, 4942:132, 2008.

[9] V. Yarmolenko, R. Sakellariou, D. Ouelhadj, and J.M. Garibaldi. SLA
based job scheduling: A case study on policies for negotiation with
resources. In Proceedings of e-Science All Hands Meeting (AHM2005),
pages 20–22, 2005.

[10] P. Leach, M. Mealling, and R. Salz. A universally unique identifier
(uuid) urn namespace. RFC4122, July, 2005.

[11] Y. Huang, N. Bessis, A. Brocco, P. Kuonen, M. Courant, and B. Hirs-
brunner. Using Metadata Snapshots for Extending Ant-based Resource
Discovery Service in Inter-cooperative Grid Communities. In Proceed-
ings of the 1st International Conference on Evolving Internet, pages
89–94, Cannes, French Riviera, France, 2009. INTERNET 2009, IEEE
Computer Society.

[12] Y. Huang, N. Bessis, A. Brocco, S. Sotiriadis, M. Courant, P. Kuo-
nen, and B. Hirsbrunner. Towards an integrated vision across inter-
cooperative grid virtual organizations. In Future Generation Information
Technology, pages 120–128, Jeju Island, Korea, 2009. FGIT 2009,
Springer.

[13] N. Bessis. Grid Technology for Maximizing Collaborative Decision
Management and Support: Advancing Effective Virtual Organizations,
chapter Model Architecture for a User Tailored Data Push Service in
Data Grids. IGI, 2009.

[14] B. Hirsbrunner, M. Courant, A. Brocco, and P. Kuonen. SmartGRID:
Swarm Agent-Based Dynamic Scheduling for Robust, Reliable, and
Reactive Grid Computing. Technical report, Working Paper 06-13,
Department of Informatics, University of Fribourg, Switzerland, 2006.

[15] Y. Huang, A. Brocco, P. Kuonen, M. Courant, and B. Hirsbrunner.
SmartGRID: A Fully Decentralized Grid Scheduling Framework Sup-
ported by Swarm Intelligence. In Seventh International Conference
on Grid and Cooperative Computing, 2008. GCC ’08, pages 160–168,
China, 2008. IEEE Computer Society.

[16] Y. Huang, A. Brocco, M. Courant, B. Hirsbrunner, and P. Kuonen.
MaGate: an interoperable, decentralized and modular high-level grid
scheduler. International Journal of Distributed Systems and Technolo-
gies (IJDST), 2010.

[17] Y. Huang, A. Brocco, M. Courant, B. Hirsbrunner, and P. Kuonen.
MaGate Simulator: A Simulation Environment for a Decentralized Grid
Scheduler. In Proceedings of the 8th International Symposium on
Advanced Parallel Processing Technologies, page 287. Springer, 2009.

[18] A. Brocco, B. Hirsbrunner, and M. Courant. Solenopsis: A Framework
for the Development of Ant Algorithms. In Swarm Intelligence Sympo-
sium, pages 316–323, Honolulu, Hawaii, April 2007. SIS, IEEE.

[19] A. Brocco, F. Frapolli, and B. Hirsbrunner. BlatAnt: Bounding
Networks’ Diameter with a Collaborative Distributed Algorithm. In
Sixth International Conference on Ant Colony Optimization and Swarm
Intelligence, Bruxelles, September 2008. ANTS, Springer.

[20] A. Brocco, F. Frapolli, and B. Hirsbrunner. Bounded Diameter Overlay
Construction: A Self Organized Approach. In IEEE Swarm Intelligence
Symposium, Nashville, Tennessee, USA, April 2009. SIS 2009, IEEE.

[21] A. Iosup, H. Li, M. Jan, S. Anoep, C. Dumitrescu, L. Wolters, and D.H.J.
Epema. The grid workloads archive. Future Generation Computer
Systems, 2008.

341

