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Abstract—Critical to the successful deployment of grid systems
is their ability to guarantee efficient meta-scheduling, namely
optimal allocation of jobs across a pool of sites with diverse
local scheduling policies. The centralized nature of current
meta-scheduling solutions is not well suited for the envisioned
increasing scale and dynamicity of next-generation grids, the
success of which relies on the development of fully distributed,
flexible and autonomic systems tailored to very large sets of
highly volatile and heterogeneous resources. In this respect, we
introduce a fully distributed grid meta-scheduling scheme that
effectively addresses the concerns regarding the scalability and
adaptability of future grid systems. Our approach employs a
lightweight protocol, called ARiA, that is based on peer-to-peer
communication between grid nodes, and makes use of dynamic
rescheduling to consider and adapt to changes in the availability
of resources. Extensive evaluation by means of an in depth
simulation study highlighted the effectiveness of the proposed
solution in improving the overall performance in terms of job
completion time and load-balancing.

I. INTRODUCTION

The original vision for grid computing was spurred by the

increasing demand for solutions enabling large-scale resource

sharing across geographically dispersed institutions [1]. From

this perspective, grid computing aims at lowering the bar-

riers of entry by facilitating the contribution of computing

resources and their exploitation, in the same spirit as the web

supports worldwide information sharing. Grid systems are the

composition of resources, middleware and protocols belonging

to distinct entities, referred to as virtual organizations [2],

promoting collaborative task execution and problem solving.

Grids have been successfully deployed in scientific scenarios

[3], and have attracted a noteworthy research stream aimed at

improving the underlying infrastructures in terms of accessi-

bility [4], efficiency [5] and reliability [6].

Because of the inherent heterogeneous and distributed na-

ture of grid systems, several challenges arise in their de-

ployment. Firstly, when users submit jobs (or tasks) to the

grid, nodes with resources matching the requested profile

must be located in an efficient way by means of resource

discovery mechanisms. Moreover, grid scheduling and alloca-

tion strategies must ensure that the job is executed according

to users’ demands (i.e. QoS agreements such as response

time, cost, etc.) and resource providers’ requirements (i.e.

security policies, execution efficiency, resource utilization,

etc.). Scheduling on the grid is further complicated by the

fact that it needs to consider two operational levels: local-

scheduling and meta-scheduling. Local-scheduling is con-

cerned with managing local tasks’ execution policies and

resources on every computing node, whereas meta-scheduling

provides coordination and orchestration between different lo-

cal schedulers by assigning tasks to the appropriate comput-

ing nodes, typically within a virtual organization. Currently

deployed grid infrastructures [7], [8] rely on centralized or

hierarchical schemes to support resource discovery, resource

and data management, meta-scheduling, as well as security

services. While such an organizational model is justified by the

business requirements imposed by virtual organizations, there

is nonetheless a concrete demand for flexible, autonomic, and

self-manageable grids, in order to reduce deployment costs,

increase reliability, and meet dynamic users’ needs [9].

Several network applications have already recognized and

exploited the advantages of distributed and decentralized ap-

proaches, which are sustained by the advances of the un-

derlying network technologies (i.e. ubiquity, link bandwidth,

etc.). These distributed approaches overcome some of the

limitations of their centralized counterparts, by improving

scalability and robustness while being responsive to dynamic

conditions. On the downside, non-centralized architectures

raise a number of challenges such as coordination and synchro-

nization between entities. Particular examples of distributed

designs that have been successfully deployed in large scale

networks include content distribution (e.g. BitTorrent), VoIP

communication platforms (e.g. Skype), and distributed data

storage and retrieval (e.g. Freenet). This established shift is

also reflected within grid architectures, with the emergence of

decentralized resource discovery mechanisms [10], [11], fully

distributed load-balancing solutions [12], and decentralized

meta-scheduling algorithms [13].

This paper focuses on grid task meta-scheduling, by pre-

senting a fully distributed protocol named ARiA to achieve

efficient global dynamic scheduling across multiple sites. The

meta-scheduling process is performed online, and takes into

account the availability of new resources as well as changes in

actual allocation policies. Accordingly, the proposed approach

aims at addressing the scalability and adaptability of grids,

to optimally exploit dynamically changing grid resources.

Scalability concerns both the size of the grid and the actual

load. On one side new grid nodes must seamlessly merge into

the grid system; on the other side, jobs must be distributed over

all suitable nodes to avoid hot spots, as long as requirements



are met. We refer to adaptability as the ability of scheduling

and rescheduling tasks according to global or local scheduling

policy changes. In this respect, a balance between adaptability

and stability is required to avoid coupling situations that have

an adverse effect on performance.

The remaining of this paper is organized as follows: Section

II discusses related work regarding meta-scheduling with a

focus on decentralized approaches. Section III presents the

proposed dynamic scheduling protocol, while Section IV and

V present the considered evaluation scenarios, respectively the

obtained results. Finally Section VI summarizes our conclu-

sions on this work and provides some insights on future work.

II. RELATED WORK

In order to meet the expectations of large-scale distributed

computing, grid systems should be able to manage large

sets of heterogeneous resources, and perform optimal task

allocation on these resources by scheduling jobs on the most

suitable machines while avoiding to repeatedly overload the

most capable ones. To a large extent, these goals rely on the

capabilities and performance of the scheduling mechanism.

Accordingly, our research focuses on a decentralized schedul-

ing mechanism, the aim of which is twofold, namely enabling

fully distributed meta-scheduling across heterogeneous nodes,

while additionally providing dynamic load-balancing support

by rescheduling jobs across nodes whenever possible. Sub-

sequently we review here related work concerning both the

meta-scheduling and the load-balancing issues, by first briefly

discussing centralized approaches and then shifting the focus

on decentralized ones.

Traditional grid models [7], [8] rely on centralized or hierar-

chical meta-schedulers that have a global view of the resources

shared on the grid or by their virtual organization. Research

has come up with very efficient centralized meta-scheduling

mechanisms [14] that can take full advantage of a global

view of the grid and provide optimal allocation of tasks on

resources. It should be noted that centralized scheduling does

not necessarily require a corresponding central information

repository, but can rely on distributed information systems

[15]. Nonetheless, these approaches still contain bottlenecks

for scalability of the system, as well as single points of failure

that may affect the robustness of the grid as a whole.

While fully decentralized cooperative grid solutions bear

advantages over their centralized counterparts, interoperability

of the diverse systems involved is often hindered by infrastruc-

tural or organizational problems, such as lack of standardiza-

tion [16]. As discussed in [17], to alleviate these issues, col-

laborative scheduling solutions should avoid enforcing control

over local resources by establishing a clear separation between

global and local resource management. Moreover, resource

management and scheduling should rely on adaptive decision-

making in order to cope with unprecedented situations.

The design of decentralized and adaptive scheduling algo-

rithms is considered in [18], with nodes performing load-

balancing within a limited set of neighbors. Two strategies

are proposed, namely transferring jobs at precise intervals

or depending on their arrival time; both strategies have the

goal of achieving similar total execution time on all nodes.

In the direction of reducing the average response time, [16]

proposes an adaptive decentralized mechanism that employs

an evolutionary fuzzy algorithm to select the best site for job

delegation among the set of all possible candidates.

The Organic Grid [19] introduces a novel paradigm that

redefines the grid as self-organized biologically inspired com-

plex system of agents providing decentralized scheduling for

heterogeneous tasks on a large number of resources. Nodes

are organized as a tree, with the root being the job originating

node, and faster nodes located closer to it; nodes can push

tasks down the tree depending on the actual load of their

children.

Collective intelligent behavior of mobile agents has been

also exploited in [12] to support grid task load-balancing

in a fully distributed environment. Job requirements and re-

sources are profiled using a performance analysis tool called

PACE [20], and matched to appropriate resources by the

agents. Recognizing the importance of decentralization and

self-organization for the future of grid systems, [21] presents a

distributed grid scheduling framework where nodes group into

communities according to resource similarities and dissemi-

nate their actual state. The scheduling process is decentralized

and makes use of information about remote nodes in order to

find the best resources to fulfill a request.

The distributed meta-scheduling model presented in [13]

operates on the principle of submitting a job to the least

loaded sites and subsequently revoking it on all but the one

that has commenced its execution. An evident drawback of

this model is the overloading of a large number of schedulers

with jobs that are frequently cancelled. Another decentralized

scheduling and load-balancing technique is detailed in [22],

which depends on nodes retaining jobs or submitting them

to their neighbors according to a heuristic on local load.

A different approach is taken in [23], where the selection

of a target neighbor for job delegation is driven by the

available bandwidth; this is made possible by the adoption

of a simplistic model that considers all tasks as identical and

focuses on the time required to transfer data.

The potential of applying peer-to-peer technologies to sup-

port decentralized grid scheduling is highlighted in [24], with

a fully distributed solution where nodes perform a gossip-

based exploration of the network for the purpose of generating

an optimal schedule on the discovered resources. Peer-to-peer

gossiping protocols are also employed in [25], but with the

goal of disseminating the state of the available resources across

the grid; this information is cached by remote nodes and used

to optimally allocate incoming jobs.

The GridIS [26] scheduling algorithm employs a peer-to-

peer communication model that enables resource providers to

bid for the delegation of a job. Job requests are submitted to the

grid through a portal that broadcasts them in an unstructured

peer-to-peer overlay network. The objective of GridIS is to

satisfy both resource consumers and providers, by ensuring

high successful execution rates, respectively fair allocation of



benefits. Similarly to GridIS, the work presented in [27] makes

use of a structured peer-to-peer overlay network to discover

nodes wishing to carry out a job; furthermore, rescheduling is

exploited to avoid starvation of jobs failing to be executed.

The protocol proposed in this paper differs from the afore-

mentioned research approaches in that it supports fully dis-

tributed task meta-scheduling across heterogeneous resources.

All meta-scheduling decisions are made locally, based on

task-related information and the node’s scheduling policy,

without requiring detailed scheduling information from other

nodes. Our solution promotes peer-to-peer interaction between

nodes and self-organization, thus contributing to the previously

mentioned drive towards flexible and autonomic grids.

III. ARiA PROTOCOL

The ARiA protocol aims at providing fully distributed task

meta-scheduling across a heterogeneous grid. The name ARiA

(air in Italian, denoting the aim to be lightweight) comes

from the initials of the different message types defined in

our protocol, namely REQUEST, ACCEPT, INFORM, and

ASSIGN (Table I). This section details the operational phases

of the protocol, as well as the information exchanged between

nodes by means of messages.

A. Assumptions

The fundamental design principle of the protocol is that

it does not enforce any particular local scheduling policy. We

assume that all nodes are connected through some sort of peer-

to-peer overlay network enabling communication between any

pair of nodes (for evaluation our previous work on a self-

organized overlay [28] was exploited).

The underlying idea is to make use of the time-to-execution

to perform dynamic rescheduling of jobs across grid nodes,

thus achieving better global throughput and load-balancing.

Job delegation may occur to any node whose resource profile

matches the job requirements, while nodes are not allowed to

decline incoming jobs that have been already accepted. Jobs

are assumed to be independent, and while every node may hold

several jobs within its scheduling queue, only one job at a time

can be executed. Furthermore, to avoid checkpointing issues,

preemption and migration of running jobs are not considered.

The protocol itself does not specify neither the resource

profiles and job submission formats, nor the matching logic

determining whether a task can be executed on a specific node

(because of resource needs, security, or accounting policies).

Actual implementations may choose to use one of the available

job description schemas such as JSDL [29]. Finally, execution

of tasks and transmission of task-related data between nodes

are out of the scope of this research.

B. Job Submission Phase

The first phase of the protocol covers the submission of

jobs and their initial handling by the node that each job was

submitted to. Because the protocol aims at achieving optimal

grid-level meta-scheduling, submitting a job to a particular

TABLE I
PROTOCOL MESSAGES AND FIELDS
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ACCEPT

Node’s address Job UUID Cost

�




�

	

REQUEST

Initiator’s address Job UUID Job Profile

�




�

	

INFORM

Assignee’s address Job UUID Job Profile Cost

�




�

	

ASSIGN

Initiator’s address Job UUID Job Profile

node does not ensure that execution will take place locally,

unless such a requirement is specified in the job description.

Jobs are assigned a universal unique identifier (UUID) that

enables their univocal tracking across the grid. Nodes receiving

job submissions are referred to as initiators for these jobs. In

order to find candidates for the execution of a job, initiators

issue resource discovery queries across the grid peer-to-peer

overlay by broadcasting REQUEST messages to a random

subset of nodes of the overlay, and wait for a predefined

timelapse for incoming query replies.

Besides the initiator’s address and the job UUID, a RE-

QUEST message contains the profile of the resources required

to carry out the job, which also specifies an Estimated job Run-

ning Time (ERT) according to a grid-level accepted baseline

regarding computing power. The estimated running time can

be computed by means of a job profiling middleware such

as PACE [20]. Job profiles may also define additional job

execution constraints, for example to prevent execution of a

job outside the boundaries of a virtual organization.

C. Job Acceptance Phase

Upon reception of a REQUEST message, a node deter-

mines whether the requirements of the job profile match its

own resources. If the request cannot be satisfied, the message

is further forwarded on the peer-to-peer overlay, otherwise a

cost value for the job based on actual resources and current

scheduling is computed. The cost information is sent back to

the job’s initiator by means of an ACCEPT message.

The cost depends on the adopted local scheduling state with

lower values being used to indicate better offers. The initiator

evaluates incoming ACCEPT responses, and selects the best

qualified node (i.e. the node providing the lowest cost). The

job is delegated to the latter, which is referred to as the current

assignee, by sending an ASSIGN message.

Currently, two cost functions have been considered, namely

Estimated Time To Completion (ETTC) and Negative Ac-

cumulated Lateness (NAL) for batch, respectively deadline

schedulers. As we assume that deadline scheduling offers

are not mixed with batch ones, values produced by different

functions do not necessarily need to be comparable.



The Estimated Time To Completion function defines the cost

for a job j as:

ETTCcost(j) = ETTCj

where ETTCj corresponds to the relative time that the job is

expected to finish according to the local scheduling policy and

actual load of the node (determined by the scheduling queue).

The Negative Accumulated Lateness is targeted at deadline

scheduling algorithms, and for a job j and an existing local

scheduling queue Q it is computed as follows:

NALcost(j) =
∑

job ∈ Q′

δ(job,Q′) ∗ |γjob|

with

Q′ = Q ∪ {j}

γjob = deadlinejob − ETCjob

δ(job,S) =







−1 γjob ≥ 0, ∀ job ∈ S,

0 γjob ≥ 0 ∧ ∃ w ∈ S : γw < 0,

1 otherwise

ETCjob refers to the absolute time that the job is expected

to finish according to the local scheduling policy and the actual

load of the node (determined by the scheduling queue Q′),

while deadlinejob is the upper time limit for job completion;

hence γjob represents the lateness of the job.

D. Dynamic Rescheduling Phase

An important aspect of the ARiA protocol is the dynamic

rescheduling of jobs. This supports the scalability and adapt-

ability of the meta-scheduling mechanism by enabling job

re-allocation to reflect possible changes in the state and

availability of resources. This can typically be the result of

new nodes connecting to the grid, or existing jobs terminating

earlier than predicted or being cancelled.

While, at the time of job assignments, assignees represent

the initiators’ perceived optimal solutions for job execution,

it should be expected that better alternatives may potentially

arise in the future. Accordingly, the assignee attempts to find

candidates for rescheduling of jobs in its queue while their

execution has not yet started. For this purpose, INFORM

messages are disseminated across the network using a low-

overhead selective flooding protocol [28].

The structure of INFORM messages relates to that of

REQUEST messages, in that they both contain a full de-

scription of the job’s profile. The goal of INFORM messages

is to discover nodes that might carry out the execution of

the job at a lower cost than the current assignee. For this

reason, INFORM messages also carry the actual cost value,

as computed by the aforementioned cost calculation functions.

Nodes will typically generate INFORM messages for a set

of jobs in their queue according to a selection mechanism.

For batch schedulers jobs with the largest waiting times are

preferentially selected, whereas for deadline schedulers jobs

with the least lateness are chosen.

The behavior of a node upon reception of INFORM mes-

sages is similar to the one concerning REQUEST messages,

with the node first checking whether it can satisfy the job’s

requirements and then evaluating the corresponding cost for

execution. Unlike REQUEST messages, an ACCEPT reply

will only be sent to the current assignee if a lower cost

can be guaranteed. Thresholds may be introduced to prevent

rescheduling when the benefit does not justify the additional

overhead, for example if the execution time is only reduced

by a small fraction.

The rescheduling process is completed when the current

assignee receives the ACCEPT message and accordingly

reassigns the job to the new assignee by means of an AS-

SIGN message. To ease tracking of jobs, and enable failsafe

mechanisms in the event of an assignee’s crash, rescheduling

actions may be notified to the job’s initiator.

IV. EVALUATION

An in depth study by means of simulation was performed

to evaluate the behavior of the ARiA protocol in a hetero-

geneous grid environment. To this extent, several scenarios

were considered, taking into account the multi-faceted nature

of the grid meta-scheduling problem. More specifically, we

focused on the efficiency of the proposed dynamic reschedul-

ing mechanism, its scalability and adaptability, the generated

traffic overhead, as well as its ability to successfully address

load-balancing. Moreover, we aim at providing a sensitivity

analysis of parameters of the protocol, in order to understand

their influence on the aforementioned assessment metrics. This

section introduces the evaluation settings and the details of the

considered scenarios.

A. Overlay Network

The overlay network is connected by means of a fully

distributed algorithm named BLÅTANT-S, a full analysis of

which can be found in [28]. BLÅTANT-S employs collab-

orative bio-inspired swarm intelligence techniques [30] to

maintain an overlay network with bounded average path length

and minimal number of links by arranging the topology in

a self-organized way. The autonomic behavior of different

species of ant-like agents, which are exchanged between nodes

of the network, contributes to the optimization of the overlay

topology: new logical links are added if required to reduce

the diameter, while existing links that do not contribute to the

solution are removed.

For the evaluation of ARiA, an overlay of 500 nodes with a

target average path length of 9 hops was deployed in a custom

simulator reproducing realistic round-trip delays. The average

node’s degree attained during simulations was 4, resulting in

about 2000 overlay links. Aside from this baseline scenario,

we also experimented with an expanding overlay growing up

to a size of 700 nodes with an average of 2800 links.

B. Grid Resources

In line with the underlying assumptions of our protocol,

meta-scheduling takes places over a heterogeneous pool of



resources, therefore each grid node is characterized by a

different profile. Profiles are comprised of several fields that

describe both hardware and software properties of the ma-

chine. In particular, we consider the implemented architecture

(e.g. AMD64, POWER, etc.), available memory, available disk

space, and operating system (e.g. LINUX, SOLARIS, etc.).

Upon initialization, the simulator randomly assigns a profile

to each node. Values for each field are chosen with different

probability distributions, as follows:

• Architectures are chosen according to the list published

on the TOP500 Supercomputing Sites (www.top500.org)

at the time of the writing of this paper. The probability

distribution is as follows: AMD64 87.2%, POWER 11%,

IA-64 1.2%, SPARC 0.2%, MIPS 0.2%, NEC 0.2%;

• Available Memory and Disk Space are both indepen-

dently and uniformly chosen as either 1, 2, 4, 8, or 16

Gigabytes;

• Operating Systems installed on each node are based

on the aforementioned TOP500 list, with the following

distribution: LINUX 88.6%, SOLARIS 5.8%, UNIX 4.4%,

WINDOWS 1%, BSD 0.2%.

Moreover, every node has an associated performance index

that compares its computing power to the baseline hardware

used to calculate the Estimated job Running Time (ERT). Each

node is assigned a random performance index p between 1

and 2, which the simulator uses to calculate the Estimated job

Running Time on that particular node (that will be referred

to as ERTp). Accordingly, the ERTp is defined as the ERT

divided by the performance index p.

C. Local Scheduling Policies

One of the primary goals of the proposed protocol is to be

local scheduler agnostic. Different schedulers are randomly

assigned to each node. In this respect, the following scheduling

policies have been considered:

• First-Come-First-Served (FCFS): incoming jobs are

appended to the scheduling queue according to the local

arrival time (i.e. reception of an ASSIGN message);

• Shortest-Job-First (SJF): the scheduling order depends

on the jobs’ ERT, with shorter jobs being executed first;

• Earliest-Deadline-First (EDF): used only for deadline

scheduling, this policy prioritizes jobs with an earlier

deadline (as specified in their profile).

FCFS and SJF share the same cost function (as defined in

Section III-C), and are thus interoperable, while EDF will be

the sole scheduling policy considered in deadline scenarios.

D. Jobs

User submitted jobs are simulated by means of a random

generator. Jobs are submitted to random nodes which initiate

the protocol by sending REQUEST messages on the network.

Each job is characterized by parameters defining the resources

required to execute the job. This information is matched

against grid resources profiles, and thus also includes the

required architecture, memory, disk space, operating system.

Job parameters are randomly chosen with the same probability

distributions as for node profiles. Job descriptors also define

an ERT, which is randomly assigned according to a normal

distribution N (µ, σ) with µ = 2h30m, σ = 1h15m, using a

lower bound of 1h and an upper bound of 4h to avoid extreme

cases. For deadline scheduling, jobs’ deadlines are set to an

absolute time equal to the current time plus their ERT plus

an additional random interval following the aforementioned

distribution.

E. Scenarios

To evaluate the different aspects of the ARiA protocol,

a series of 26 scenarios were devised and simulated. Each

simulation run reproduces 41h 40m of grid activity, and a total

of 10 runs was repeated for each scenario. For convenience, a

list of the considered scenarios and a summary of their features

can be found in Table II (as a naming convention, all scenarios

with dynamic scheduling enabled are labelled starting with i).

In all scenarios a total of 1000 jobs is submitted to ran-

dom nodes on the grid. Unless otherwise specified, jobs are

submitted at 10 seconds intervals, starting from 20 minutes

into the simulation, up to 3h 7m. Furthermore, when dynamic

rescheduling is enabled, INFORM messages are sent for at most

2 scheduled jobs every 5 minutes. REQUEST messages are

forwarded on the overlay for at most 9 hops; at each step, at

most 4 random neighbors of the current node are contacted.

Respectively, for INFORM messages a more lightweight

approach is followed, with at most 8 hops and up to 2

neighbors. These values are based on the properties of the

underlying peer-to-peer overlay management algorithm and

the parameters set for its construction, and guarantee a near

optimal operation without flooding the network.

A first set of scenarios (FCFS, SJF, Mixed, iFCFS, iSJF,

iMixed) aims at assessing the impact of different local batch

scheduling policies on the overall performance, and the bene-

fits of dynamic rescheduling. In the Mixed and iMixed scenar-

ios the ratio between FCFS and SJF schedulers is one-to-one;

moreover, the iMixed scenario is selected as a baseline for

comparison regarding subsequent evaluation of the protocol,

as it best supports the concept of schedulers’ heterogeneity.

Additionally, the Deadline and iDeadline scenarios study

the effects of dynamic rescheduling using a deadline local

scheduling policy, namely EDF. In the latter scenarios, the

deadline is set at an average of 7h 30m after the expected

completion time, as explained in Section IV-D.

To evaluate the response of the scheduling mechanism in

both low and high load situations, four scenarios were set

up. To simulate low load situations (LowLoad, iLowLoad) the

job submission rate was halved to one job every 20 seconds,

running from 20 minutes to 5h 54m into the simulation.

Respectively, for high load situations (HighLoad, iHighLoad)

the rate was doubled, with one submission every 5 seconds,

starting from 20 minutes up to 1h 45m. Correspondingly,

the DeadlineH and iDeadlineH scenarios focus on the meta-

scheduling protocol’s ability to match stricter deadlines re-

duced to an average of 2h 30m after completion time.



TABLE II
SUMMARY OF EVALUATION SCENARIOS

Scenario Description

FCFS All nodes implement a FCFS batch scheduling policy
without dynamic rescheduling.

SJF All nodes implement a SJF scheduling policy without
dynamic rescheduling.

Mixed Nodes implement either a FCFS or a SJF policy (uniformly
chosen at random) without dynamic rescheduling.

Deadline All nodes implement the EDF scheduling policy.

LowLoad Like Mixed but the rate of job submission is halved to 1
submission every 20 seconds, with a total of 1000 jobs
between 20 minutes and 5h 54m into the simulation.

HighLoad Like Mixed but the rate of job submission is doubled to
1 submission every 5 seconds, with a total of 1000 jobs
between 20 minutes and 1h 45m into the simulation.

DeadlineH Like Deadline, but jobs have deadlines closer to their
estimated completion time (on average 2h 30m after com-
pletion instead of 7h 30m).

Expanding Like Mixed but the network size is dynamically increased
by connecting a new node on average every 50 seconds,
starting from 1h 23m, up until a total of 700 nodes (at
around 4h 10m into the simulation).

Precise Like Mixed but with the actual job running time precisely
matching the ERT.

Accuracy25 Like Mixed but the relative ERT error is ±25%.

AccuracyBad Like Mixed but the ERT is always lower than the actual
running time.

iFCFS Like FCFS but with dynamic rescheduling.

iSJF Like SJF but with dynamic rescheduling.

iMixed Like Mixed but with dynamic rescheduling.

iDeadline Like Deadline but with dynamic rescheduling.

iLowLoad Like LowLoad but with dynamic rescheduling.

iHighLoad Like HighLoad but with dynamic rescheduling.

iDeadlineH Like DeadlineH but with dynamic rescheduling.

iExpanding Like Expanding but with dynamic rescheduling.

iInform1 Like iMixed but INFORM messages are sent only for 1
scheduled job every 5 minutes.

iInform4 Like iMixed but INFORM messages are sent for at most 4
scheduled jobs every 5 minutes.

iInform15m Like iMixed but rescheduling is proposed only if a 15m
improvement is provided.

iInform30m Like iMixed but rescheduling is proposed only if a 30m
improvement is provided.

iPrecise Like Precise but with dynamic rescheduling.

iAccuracy25 Like Accuracy25 but with dynamic rescheduling.

iAccuracyBad Like AccuracyBad but with dynamic rescheduling.

The scalability of the proposed approach is gauged by

means of a dynamically expanding network within the Ex-

panding and iExpanding scenarios. Starting from the original

network of 500 nodes, new nodes are added every 50 seconds

starting from 1h 23m, increasing its size to 700 nodes at

approximately 4h 10m into the simulation. These new nodes

represent newly available grid resources that can take part in

the scheduling and rescheduling process.

A sensitivity analysis of the dynamic scheduling mechanism

is conducted by changing the number of candidate jobs and

the rescheduling acceptance threshold. More specifically, in

scenarios iInform1 and iInform4, one scheduled job, respec-

tively four, are considered for rescheduling, in contrast to the

baseline choice of two. In the iInform15m and iInform30m, the

benefit over the ETTC required for rescheduling is extended

to 15 minutes, respectively 30 minutes, compared to the 3

minutes of the baseline scenario.

The meta-scheduling scheme depends on the ERT of each

job, it is thus important to understand the influence of the

accuracy of such an estimation. Accordingly, we evaluated

the behavior of the protocol by varying the estimation error

introduced in the simulation, which affects the Actual Running

Time (ART). The ART for a job j (which is unknown until

execution completes) on a node with performance index p is

derived from ERT, ERTp, and a relative error ǫ as follows:

ARTj,ǫ = ERT
p
j + driftj,ǫ

with

driftj,ǫ = U[−1,1] ∗ ERTj ∗ ǫ

The baseline scenario assumes an accuracy of ±10% of the

Estimated job Running Time (ǫ = 0.1), whereas scenarios

Accuracy25 and iAccuracy25 broaden the range to ±25%

(ǫ = 0.25). The AccuracyBad and iAccuracyBad scenarios

consider an optimistic estimation where the ERT is always

lower than the actual time (ǫ = 0.1, and driftj,ǫ is replaced

with |driftj,ǫ|). Finally, the Precise and iPrecise scenarios

refer to experiments where the estimation matches the Actual

Running Time (ǫ = 0).

V. RESULTS

Having detailed the parameters of the considered evaluation

scenarios, we present and discuss here the corresponding

results. First, a discussion on the benefits of the dynamic

rescheduling mechanism of the ARiA protocol, its scalability,

and its effectiveness to address the load-balancing problem is

presented. This is followed by a sensitivity analysis of the

different parameters of the protocol and their influence on the

meta-scheduling performance. Finally, the generated network

traffic is examined in order to determine the bandwidth con-

sumption of the protocol.

A. Scheduling Policies

The first set of experiments aims at examining the effects

of different local-scheduling policies on the overall efficiency

of the protocol in terms of throughput, average job completion

time, and load-balancing. In this respect, we compare results

for the FCFS, SJF, and Mixed policies both with and without

dynamic rescheduling.

Figure 1 shows the evolution of the number of completed

jobs during the simulation. Vertical bars indicate the start and

the end of the job submission process. The iSJF and iMixed

scenarios demonstrate the benefits of dynamic rescheduling,



although it is noteworthy to highlight the comparative opti-

mality of FCFS without the use of the proposed rescheduling

mechanism. This is attributed to the fact that while the initial

assignment is made to the node that provides the least time to

completion in all scheduling algorithms, only FCFS preserves

the optimality of the initial delegation by not modifying the

scheduling order upon new submissions.

Figure 2 depicts the average job completion time, making a

distinction between the waiting time and the execution time,

where upon a significant observation can be made. Specifically,

while dynamic rescheduling scenarios exhibit larger execution

times, there is a reduction in the completion time in all but

the optimal FCFS cases. These results prove the effectiveness

of our approach as well as the usefulness of the rescheduling

phase, and its ability to delegate jobs to nodes with shorter

waiting queues rather than just to the most computationally

capable ones.

The load-balancing effect of dynamic rescheduling is illus-

trated in Figure 3, which shows the overall utilization of grid

nodes. Vertical bars indicate the start and the end of the job

submission process. In both the iSJF and iMixed scenarios,

the number of idle nodes (i.e. nodes with an empty scheduling

queue) is reduced by approximately 100 nodes. Moreover, all

dynamic rescheduling scenarios have very similar behavior

as far as node utilization is concerned, which underlines the

stability of our approach.

For deadline scheduling scenarios important performance

metrics are the number of missed deadlines, the lateness

(i.e. the time left from completion to the deadline), and

the missed time (i.e. time past the deadline). As shown

in Figure 4, dynamic rescheduling significantly reduces the

occurrence of missed deadlines. In particular, their number

decreased from an average of 187 in the Deadline scenario,

to just 4 in the iDeadline one, respectively from 236 in the

DeadlineH scenario, to 59 in iDeadlineH. Furthermore, while

the average lateness (over successfully matched deadlines) was

only slightly improved, the average missed time (over failed

deadlines) was halved when employing dynamic rescheduling.

These outcomes validate the benefits of the ARiA protocol even

beyond simple batch scheduling.

B. Scalability

We assess here the scalability of our meta-scheduling pro-

tocol in respect to both the size of the network (i.e. number

of available resources) and the frequency of job submissions.

Concerning the first aspect, Figure 5 illustrates the number of

idle nodes during our simulations in an expanding network.

Vertical bars indicate the start and the end of the job submis-

sion process. The number of nodes was gradually increased

from 500 to 700, in the interval between 1h 23m and 4h 10m.

As expected, dynamic rescheduling enables better usage of

the newly available resources, by reducing the number of idle

nodes albeit network expansion.

Figure 6 presents the results concerning the number of idle

nodes under diverse load conditions, where 1000 jobs are

submitted within different time spans. Horizontal arrows mark

Fig. 1. Completed Jobs

Fig. 2. Job Completion Time

Fig. 3. Idle Nodes

the job submission intervals for the six considered scenarios. It

is evident that in dynamic rescheduling scenarios it is possible

to maintain a higher degree of resources’ utilization than in

their counterparts without rescheduling both in low and high



Fig. 4. Deadline Scheduling Performance

Fig. 5. Idle Nodes (Expanding Network)

load situations.

The merits of the increased jobs’ load-balancing in dynamic

rescheduling scenarios is reflected in the average job comple-

tion time, as illustrated in Figure 7. It interesting to notice

that the performance in the iHighLoad scenario is comparable

to the LowLoad one, despite the frequency of job submission

having been increased by four times.

C. Rescheduling Policies

The dynamic rescheduling operation is determined by both

the number of jobs that could potentially be reassigned, and by

the benefit that could be provided by such an operation. In this

respect, we are interested in evaluating the impact of different

rescheduling policies on the average job completion time. In

relation to the number of candidates for rescheduling, Figure

8 shows minimal differences between the iInform1, iMixed,

and iInform4, with the latter achieving the lowest waiting

time. Pertaining to the experiments aimed at comparing the

diverse ETTC improvement thresholds required to trigger the

rescheduling of a job, no particular variations in the overall

performance were noticed.

Fig. 6. Idle Nodes (Load)

Fig. 7. Job Completion Time (Load)

Fig. 8. Job Completion Time (Rescheduling Policies)

D. Sensitivity to ERT Accuracy

An important assumption of the ARiA protocol is the

availability of a job running time estimation. We therefore

experimented with different levels of accuracy to evaluate its



Fig. 9. Sensitivity to ERT

effects on the job completion time (Figure 9). In all but the Ac-

curacyBad and iAccuracyBad scenarios, the balanced nature of

the introduced error is to be accounted for the homogeneity of

the produced results. Nonetheless, even optimistic estimations

do not excessively worsen the efficiency of the system.

E. Traffic Evaluation

Figure 10 summarizes the generated network overhead for

the most representative scenarios. Traffic estimations for the

different types of messages employed by the protocol are

detailed. Actual sizes for each message type were considered

as follows: REQUEST, INFORM, and ASSIGN messages

carry 1KBytes of information, whereas ACCEPT messages

only 128bytes. Traffic generated by REQUEST messages

represents the initial job allocation phase, and thus does not

vary significantly across the different scenarios. Moreover,

ASSIGN and ACCEPT messages account for a negligible

part of the overall traffic.

The rescheduling phase generates additional traffic, which

is nonetheless compensated by an improvement in the average

job completion time. As this traffic estimation refers to a

network of 500 nodes, the overhead accounts only for an

average of 3MBytes per node in all scenarios over a period of

about 42h, namely a bandwidth consumption of just 149bps. It

is interesting to note that execution in an expanding network

scenario (i.e. iExpanding) reduces the overall traffic gener-

ated by INFORM messages. The reason behind this is the

ability of starting job execution earlier on newly available

resources, hence reducing the number of candidate jobs for

rescheduling. As far as dynamic rescheduling is concerned,

scenario iInform1 can be regarded as the best compromise

between performance and network overhead, as it achieves an

average completion time comparable to other scenarios while

generating significantly less traffic.

VI. CONCLUSIONS

In this paper, we presented a fully distributed grid meta-

scheduling protocol named ARiA that aims at improving the

efficiency of heterogeneous grids, as well as addressing the

Fig. 10. Network Overhead Comparison

related scalability and adaptability concerns. In this respect,

our work is consistent with the vision of next-generation grids

that strive to evolve into reliable, flexible, autonomic, and self-

manageable systems that require minimal user intervention and

reduced deployment costs.

The proposed scheme is based on simple messages ex-

changed between grid nodes over a peer-to-peer overlay, and

does not impose any restriction on the implemented local

scheduling policies, thus facilitating its integration with exist-

ing grid middlewares. The meta-scheduling process features a

rescheduling phase that enables optimal job reallocation under

dynamic conditions, by considering newly available resources

as well as changes in current resource utilization.

An extensive experimental evaluation of the protocol’s be-

havior yielded significant results that validate the effectiveness

of our approach. More specifically, it was proved that shorter

average execution times can be achieved under heterogeneous

local scheduling policies. Additionally, dynamic rescheduling

remarkably improved deadline scheduling performance, by

reducing the number of missed deadlines. In terms of resource

utilization, evaluation on both static and expanding network

scenarios highlighted the ability of the dynamic rescheduling

phase to enhance load-balancing amongst the nodes and to

rapidly respond to the availability of new resources.

Traffic analysis of the ARiA protocol pinpointed an accept-

able bandwidth consumption when compared to the acquired

benefits, thus suggesting the viability of our approach in real-

world deployments. Accordingly, we do recognize the need

for full-scale evaluation with real grid workload traces, a task

that will nonetheless be carried out in the future.

Future work will also include experiments with different

types of peer-to-peer overlay networks in order to gain a

better understanding of its correlation to the meta-scheduling

performance. Furthermore, additional local-scheduling policies

would need to be considered, such as advance reservation,



backfill or priority scheduling. Finally, the encouraging results

presented in this paper serve as a motivation for our future

work, which will see ARiA integrated within the SmartGRID

framework [31].
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